設(shè)函數(shù)y=f(x)是定義域在R,并且滿足f(x+y)=f(x)+f(y),f(
13
)=1
,且當(dāng)x>0時(shí),f(x)>0.
(1)求f(0)的值;                
(2)判斷函數(shù)的奇偶性;
(3)試判斷函數(shù)的單調(diào)性,并求解不等式f(x)+f(2+x)<2.
分析:(1)賦值令x=y=0,則可求f(0)的值;
(2)令y=-x,結(jié)合f(0)的值,可得結(jié)論;
(3)利用單調(diào)性的定義,結(jié)合足f(x+y)=f(x)+f(y),可得函數(shù)的單調(diào)性,進(jìn)而將抽象不等式轉(zhuǎn)化為具體不等式,即可求解.
解答:解:(1)令x=y=0,則f(0)=f(0)+f(0),∴f(0)=0
(2)令y=-x,得 f(0)=f(x)+f(-x)=0,∴f(-x)=-f(x),故函數(shù)f(x)是R上的奇函數(shù)
(3)f(x)是R上的增函數(shù),證明如下:
任取x1,x2∈R,x1<x2,則x2-x1>0
∴f(x2)-f(x1)=f(x2-x1+x1)-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0
∴f(x1)<f(x2
故f(x)是R上的增函數(shù)
f(
1
3
)=1
,∴f(
2
3
)=f(
1
3
+
1
3
)=f(
1
3
)+f(
1
3
)=2

f(x)+f(2+x)=f[x+(2+x)]=f(2x+2)<f(
2
3
)

又由y=f(x)是定義在R上的增函數(shù),得2x+2<
2
3

解之得x<-
2
3
,故x∈(-∞,-
2
3
)
點(diǎn)評:本題考查函數(shù)的奇偶性與單調(diào)性,考查解不等式,考查賦值法的運(yùn)用,確定函數(shù)的單調(diào)性是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f (x)是定義域?yàn)镽的奇函數(shù),且滿足f (x-2)=-f (x)對一切x∈R恒成立,當(dāng)-1≤x≤1時(shí),f (x)=x3,則下列四個(gè)命題:
①f(x)是以4為周期的周期函數(shù).
②f(x)在[1,3]上的解析式為f (x)=(2-x)3
③f(x)在(
3
2
,f(
3
2
))
處的切線方程為3x+4y-5=0.
④f(x)的圖象的對稱軸中,有x=±1,其中正確的命題是(  )
A、①②③B、②③④
C、①③④D、①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的函數(shù),并且滿足下面三個(gè)條件:
①對正數(shù)x、y都有f(xy)=f(x)+f(y);
②當(dāng)x>1時(shí),f(x)<0;
③f(3)=-1
(I)求f(1)和f(
19
)
的值;
(II)如果不等式f(x)+f(2-x)<2成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在R上以1為周期的函數(shù),若g(x)=f(x)-2x在區(qū)間[2,3]上的值域?yàn)閇-2,6],則函數(shù)g(x)在[-12,12]上的值域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在正實(shí)數(shù)上的增函數(shù),且f(xy)=f(x)+f(y),
(1)求證:f(
xy
)=f(x)-f(y);
(2)若f(3)=1,f(a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在R上的奇函數(shù),且f(x-2)=-f(x)對一切x∈R都成立,又當(dāng)x∈[-1,1]時(shí),f(x)=x3,則下列五個(gè)命題:
①函數(shù)y=f(x)是以4為周期的周期函數(shù);
②當(dāng)x∈[1,3]時(shí),f(x)=( x-2)3
③直線x=±1是函數(shù)y=f(x)圖象的對稱軸;
④點(diǎn)(2,0)是函數(shù)y=f(x)圖象的對稱中心;
⑤函數(shù)y=f(x)在點(diǎn)(
3
2
,f(
3
2
))處的切線方程為3x-y-5=0.
其中正確的是
①③
①③
.(寫出所有正確命題的序號)

查看答案和解析>>

同步練習(xí)冊答案