A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
分析 根據(jù)x得出tanx的取值范圍,化$\frac{sin2x}{{{{sin}^2}x+4{{cos}^2}x}}$為切函數(shù),利用基本不等式求出它的最大值.
解答 解:當(dāng)x∈($\frac{π}{4}$,$\frac{π}{2}$)時,tanx∈(1,+∞),
且$\frac{sin2x}{{{{sin}^2}x+4{{cos}^2}x}}$=$\frac{2sinxcosx}{{sin}^{2}x+{4cos}^{2}x}$=$\frac{2tanx}{{tan}^{2}x+4}$=$\frac{2}{tanx+\frac{4}{tanx}}$,
又tanx+$\frac{4}{tanx}$≥2$\sqrt{tanx•\frac{4}{tanx}}$=4,
當(dāng)且僅當(dāng)tanx=$\frac{4}{tanx}$,即tanx=2時“=”成立;
∴$\frac{sin2x}{{{{sin}^2}x+4{{cos}^2}x}}$的最大值為$\frac{2}{4}$=$\frac{1}{2}$.
故選:A.
點評 本題考查了三角函數(shù)的最值問題,根據(jù)二倍角公式與弦化切公式化簡函數(shù)解析式,是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
社團(tuán) | 圍棋 | 戲劇 | 足球 |
人數(shù) | 10 | m | n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{17}{10}$ | B. | $\frac{4}{5}$ | C. | -$\frac{13}{15}$ | D. | -$\frac{14}{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=($\sqrt{x+1}$)2 | B. | y=$\root{3}{{x}^{3}}$+1 | C. | y=$\frac{{x}^{2}}{x}$+1 | D. | y=$\sqrt{{x}^{2}}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{4}{5}$ | C. | $\frac{7}{8}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c>a>b | B. | a>b>c | C. | b>a>c | D. | a>c>b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com