【題目】下列四種說法:
①垂直于同一平面的所有向量一定共面;
②在△ABC中,已知 ,則∠A=60°;
③在△ABC中,sin2A=sin2B+sin2C+sinBsinC,則A=
④若a>0,b>0,a+b=2,則a2+b2≥2;
正確的序號(hào)有

【答案】①②④
【解析】解:①垂直于同一平面的所有向量一定共面,①正確;
②在△ABC中,由 ,得 ,
即tanA=tanB=tanC,則∠A=60°,②正確;
③在△ABC中,由sin2A=sin2B+sin2C+sinBsinC,得a2=b2+c2+bc,
故cosA= =﹣ ,則A= ,③錯(cuò)誤;
④若a>0,b>0,a+b=2,則a2+b2≥( 2=2,④正確;
所以答案是:①②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinxcosx+sin2x﹣
(1)求f(x)的最小正周期及其對(duì)稱軸方程;
(2)設(shè)函數(shù)g(x)=f( + ),其中常數(shù)ω>0,|φ|< . (i)當(dāng)ω=4,φ= 時(shí),函數(shù)y=g(x)﹣4λf(x)在[ , ]上的最大值為 ,求λ的值;
(ii)若函數(shù)g(x)的一個(gè)單調(diào)減區(qū)間內(nèi)有一個(gè)零點(diǎn)﹣ ,且其圖象過點(diǎn)A( ,1),記函數(shù)g(x)的最小正周期為T,試求T取最大值時(shí)函數(shù)g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖示,A,B分別是橢圓C: (a>b>0)的左右頂點(diǎn),F(xiàn)為其右焦點(diǎn),2是|AF與|FB|的等差中項(xiàng), 是|AF|與|FB|的等比中項(xiàng).點(diǎn)P是橢圓C上異于A、B的任一動(dòng)點(diǎn),過點(diǎn)A作直線l⊥x軸.以線段AF為直徑的圓交直線AP于點(diǎn)A,M,連接FM交直線l于點(diǎn)Q.

(1)求橢圓C的方程;
(2)試問在x軸上是否存在一個(gè)定點(diǎn)N,使得直線PQ必過該定點(diǎn)N?若存在,求出N點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的頂點(diǎn)B(﹣1,﹣3),邊AB上的高CE所在直線的方程為4x+3y﹣7=0,BC邊上中線AD所在的直線方程為x﹣3y﹣3=0.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A,B是非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)元素x,在集合中B都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A→B為從集合A到集合B的一個(gè)映射,設(shè)f:x→ 是從集合A到集合B的一個(gè)映射.①若A={0,1,2},則A∩B=;②若B={1,2},則A∩B=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,嘗試類比探究函數(shù)y=x2 的圖象,寫出圖象特征,并根據(jù)你得到的結(jié)論,嘗試猜測(cè)作出函數(shù)對(duì)應(yīng)的圖象. 閱讀材料:
我國(guó)著名數(shù)學(xué)家華羅庚先生曾說:數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.
在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征.我們來看一個(gè)應(yīng)用函數(shù)的特征研究對(duì)應(yīng)圖象形狀的例子.
對(duì)于函數(shù)y= ,我們可以通過表達(dá)式來研究它的圖象和性質(zhì),如:

(1)在函數(shù)y= 中,由x≠0,可以推測(cè)出,對(duì)應(yīng)的圖象不經(jīng)過y軸,即圖象與y軸不相交;由y≠0,可以推測(cè)出,對(duì)應(yīng)的圖象不經(jīng)過x軸,即圖象與x軸不相交.
(2)在函數(shù)y= 中,當(dāng)x>0時(shí)y>0;當(dāng)x<0時(shí)y<0,可以推測(cè)出,對(duì)應(yīng)的圖象只能在第一、三象限;
(3)在函數(shù)y= 中,若x∈(0,+∞)則y>0,且當(dāng)x逐漸增大時(shí)y逐漸減小,可以推測(cè)出,對(duì)應(yīng)的圖象越向右越靠近x軸;若x∈(﹣∞,0),則y<0,且當(dāng)x逐漸減小時(shí)y逐漸增大,可以推測(cè)出,對(duì)應(yīng)的圖象越向左越靠近x軸;
(4)由函數(shù)y= 可知f(﹣x)=﹣f(x),即y= 是奇函數(shù),可以推測(cè)出,對(duì)應(yīng)的圖象關(guān)于原點(diǎn)對(duì)稱. 結(jié)合以上性質(zhì),逐步才想出函數(shù)y= 對(duì)應(yīng)的圖象,如圖所示,在這樣的研究中,我們既用到了從特殊到一般的思想,由用到了分類討論的思想,既進(jìn)行了靜態(tài)(特殊點(diǎn))的研究,又進(jìn)行了動(dòng)態(tài)(趨勢(shì)性)的思考.讓我們享受數(shù)學(xué)研究的過程,傳播研究數(shù)學(xué)的成果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 過點(diǎn) ,離心率為 ,點(diǎn)F1 , F2分別為其左、右焦點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)P,Q,且 ?若存在,求出該圓的方程,并求|PQ|的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓和雙曲線焦點(diǎn)F1 , F2相同,且離心率互為倒數(shù),P是橢圓和雙曲線在第一象限的交點(diǎn),當(dāng)∠F1PF2=60°時(shí),橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+x﹣16.
(1)求曲線y=f(x)在點(diǎn)(2,﹣6)處的切線方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點(diǎn),求直線l的方程及切點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案