如圖所示,是定義在區(qū)間)上的奇函數(shù),令,并有關于函數(shù)的四個論斷:

①若,對于內的任意實數(shù)),恒成立;
②函數(shù)是奇函數(shù)的充要條件是;
③若,,則方程必有3個實數(shù)根;
,的導函數(shù)有兩個零點;
其中所有正確結論的序號是(    ).
A.①②B.①②③
C.①④D.②③④
A
①因為f(x)在[-1,1]上是增函數(shù),當a>0時,g(x) 在[-1,1]上也是增函數(shù).正確;
②若g(x)為奇函數(shù),則g(-x)+g(x)=0恒成立,所以2b=0,b=0.正確。
③y=af(x)的圖像,與直線y=-b不一定有三個交點,因而錯。
④當a=0時,g(x)=b,=0有無數(shù)個零點。錯。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
(理)(1)證明不等式:
(2)已知函數(shù)上單調遞增,求實數(shù)的取值范圍.
(3)若關于x的不等式上恒成立,求實數(shù)的最大值.
(文)已知函數(shù)的導函數(shù)的圖象關于直線x=2對稱.
(Ⅰ)求b的值;
(Ⅱ)若處取得極小值,記此極小值為,求的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為正實數(shù),為自然數(shù),拋物線軸正半軸相交于點,設為該拋物線在點處的切線在軸上的截距。
(1)用表示
(2)求對所有都有成立的的最小值;
(3)當時,比較的大小,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù).
(1)求函數(shù)在區(qū)間的最小值;
(2)當時,記曲線處的切線為,軸交于點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)已知是函數(shù)的一個極值點.
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù),
(1)若的極值點,求值;
(2)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù),(1)求函數(shù)極值.(2)求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是函數(shù)的導函數(shù),若函數(shù)在區(qū)間上單調遞減,則實數(shù)的取值范圍是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案