13.已知數(shù)列{an}中,a1=2,an+1=an+ln(1+$\frac{1}{n}$),則an=( 。
A.2+lnnB.2+(n-1)lnnC.lnn-2D.1+n+lnn

分析 an+1=an+ln(1+$\frac{1}{n}$),可得an+1-an=ln$\frac{n+1}{n}$,利用“累加求和”方法與對數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:an+1=an+ln(1+$\frac{1}{n}$),∴an+1-an=ln$\frac{n+1}{n}$,
則an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=$ln\frac{n}{n-1}$+$ln\frac{n-1}{n-2}$+…+ln$\frac{2}{1}$+2
=ln$(\frac{n}{n-1}•\frac{n-1}{n-2}•…•\frac{3}{2}•\frac{2}{1})$+2
=lnn+2.
故選:A.

點評 本題考查了數(shù)列遞推關(guān)系、累加求和方法、對數(shù)運(yùn)算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某三棱錐的三視圖如圖所示,則俯視圖的面積為( 。
A.4B.8C.4$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若sin($\frac{π}{4}$-α)=$\frac{3}{5}$,-$\frac{π}{4}$<α<0,則cos2α=( 。
A.-$\frac{24}{25}$B.$\frac{1}{5}$C.-$\frac{1}{5}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$y=sin(2x+\frac{π}{3})$圖象中的一條對稱軸的方程是( 。
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=3x+$\frac{12}{x^2}$(x>0)取得最小值時x為( 。
A.8B.9C.2D.6$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.關(guān)于x的方程x2+(k+i)x-2-ki=0(x∈R,i為虛數(shù)單位)有實數(shù)根,則實數(shù)k的值為±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=x3-3ax2+(2a+1)x既有極小值又有極大值,則a的取值范圍為( 。
A.-$\frac{1}{3}$<a<1B.a>1或a$<-\frac{1}{3}$C.-1$<a<\frac{1}{3}$D.a$>\frac{1}{3}$或a<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$f(k)=sin\frac{kπ}{4}$,k∈Z.
(1)求證:f(1)+f(2)+…+f(8)=f(9)+f(10)+…+f(16);
(2)求f(1)+f(2)+…+f(2020)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3處的導(dǎo)數(shù)為0.
(1)求f(x)的解析式;       
(2)求f(x)在點A(1,16)處的切線方程.

查看答案和解析>>

同步練習(xí)冊答案