【題目】從2016年1月1日起全國(guó)統(tǒng)一實(shí)施全面兩孩政策. 為了解適齡民眾對(duì)放開(kāi)

生二胎政策的態(tài)度,某市選取70后作為調(diào)查對(duì)象,隨機(jī)調(diào)查了10人,其中打算生二胎

的有4人,不打算生二胎的有6人.

(1)從這10人中隨機(jī)抽取3人,記打算生二胎的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(2)若以這10人的樣本數(shù)據(jù)估計(jì)該市的總體數(shù)據(jù),且以頻率作為概率,從該市70后中隨機(jī)抽取3人,記打算生二胎的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

【答案】(1)見(jiàn)解析; (2) 見(jiàn)解析;

【解析】試題分析:1由題可知服從超幾何分布, 的取值為0,1,2,3.則的分布列和數(shù)學(xué)期望易求:

(2)由題意可知服從二項(xiàng)分布,且.,則機(jī)變量的分布列和數(shù)學(xué)期望.可求

試題解析:(1)由題意知, 的值為0,1,2,3.

, ,

, .

的分布列為:

0

1

2

3

(2)由題意可知,全市70后打算生二胎的概率為P= =0,1,2,3. 且.

.

的分布列為:

0

1

2

3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選做題】本題包括A、B、C、D四小題,請(qǐng)選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩小題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

A.[選修4-1:幾何證明選講]

如圖, 分別與圓相切于點(diǎn), 經(jīng)過(guò)圓心,且,求證: .

B.[選修4-2:矩陣與變換]

在平面直角坐標(biāo)系中,已知點(diǎn), , ,先將正方形繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),再將所得圖形的縱坐標(biāo)壓縮為原來(lái)的一半、橫坐標(biāo)不變,求連續(xù)兩次變換所對(duì)應(yīng)的矩陣.

C.[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)).現(xiàn)以為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,求曲線的極坐標(biāo)方程.

D.[選修4-5:不等式選講]

已知為互不相等的正實(shí)數(shù),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(公元前5-6世紀(jì)),祖沖之之子,國(guó)齊梁時(shí)代的數(shù)學(xué)家. 他提出了一條原理:“冪勢(shì)既同,則積不容異.這句話的意思是:兩個(gè)等幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)何體的體積相等. 該原理在西方到十七世紀(jì)才由意大利數(shù)學(xué)家卡瓦列利發(fā)現(xiàn),比祖晚一千一百多年. 橢球體是橢繞其軸旋轉(zhuǎn)所成的旋轉(zhuǎn)體. 將底面徑皆為,高皆為橢半球體及已被挖去了圓錐體的圓柱體放于同一平面. 以平行于平面的平面于距平面任意高處可橫截得到兩截面,可以證明知總成立. 據(jù)此,短軸長(zhǎng)為長(zhǎng)軸為球體的體積是 __________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子公司開(kāi)發(fā)一種智能手機(jī)的配件,每個(gè)配件的成本是15元,銷(xiāo)售價(jià)是20元,月平均銷(xiāo)售件,通過(guò)改進(jìn)工藝,每個(gè)配件的成本不變,質(zhì)量和技術(shù)含金量提高,市場(chǎng)分析的結(jié)果表明,如果每個(gè)配件的銷(xiāo)售價(jià)提高的百分率為,那么月平均銷(xiāo)售量減少的百分率為,記改進(jìn)工藝后電子公司銷(xiāo)售該配件的月平均利潤(rùn)是(元).

(1)寫(xiě)出的函數(shù)關(guān)系式;

(2)改進(jìn)工藝后,試確定該智能手機(jī)配件的售價(jià),使電子公司銷(xiāo)售該配件的月平均利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x (℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程x;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得的線性回歸方程是否可靠?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖暅?zhǔn)悄媳背瘯r(shí)代的偉大科學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖出一個(gè)圓錐所得的幾何體;圖②、圖③、圖④分別是圓錐、圓臺(tái)和半球,則滿足祖暅原理的兩個(gè)幾何體為( 。

A. ①② B. ①③ C. ②④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 ,定點(diǎn)(常數(shù))的直線與曲線相交于、兩點(diǎn).

(1)若點(diǎn)的坐標(biāo)為,求證:

(2)若,以為直徑的圓的位置是否恒過(guò)一定點(diǎn)?若存在,求出這個(gè)定點(diǎn),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左頂點(diǎn)為,右焦點(diǎn)為, 為原點(diǎn), , 軸上的兩個(gè)動(dòng)點(diǎn),且,直線分別與橢圓交于, 兩點(diǎn).

 

(Ⅰ)求的面積的最小值;

(Ⅱ)證明: , 三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三個(gè)臭皮匠頂上一個(gè)諸葛亮能頂?shù)蒙蠁?在一次有關(guān)“三國(guó)演義”的知識(shí)競(jìng)賽中三個(gè)臭皮匠A、B、C能答對(duì)題目的概率分別為P(A),P(B),P(C)諸葛亮D能答對(duì)題目的概率為P(D),如果將三個(gè)臭皮匠A、B、C組成一組與諸葛亮D比賽,答對(duì)題目多者為勝方問(wèn)哪方勝?

查看答案和解析>>

同步練習(xí)冊(cè)答案