已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個相等的實數(shù)根.求函數(shù)f(x)的解析式.
分析:由方程f(x)=x有兩個相等的實數(shù)根,且f(x)=ax2+bx,△=(b-1)2=0,由f(2)=0,知4a+2=0,由此能求出函數(shù)f(x)的解析式.
解答:解:∵方程f(x)=x有兩個相等的實數(shù)根,
且f(x)=ax2+bx,
∴ax2+(b-1)x=0有兩個相等的實數(shù)根,
∴△=(b-1)2=0,b=1,
又∵f(2)=0,∴4a+2=0.∴a=-
1
2

∴f(x)=-
1
2
x2
+x.
點評:本題考查函數(shù)的解析式的求法,是基礎題.解題時要認真審題,注意根的判別式的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a,b為常數(shù),且a≠0,函數(shù)f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然對數(shù)的底數(shù)).
(I)求實數(shù)b的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當a=1時,是否同時存在實數(shù)m和M(m<M),使得對每一個t∈[m,M],直線y=t與曲線y=f(x)(x∈[
1e
,e])都有公共點?若存在,求出最小的實數(shù)m和最大的實數(shù)M;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a、b為常數(shù),且a≠0,函數(shù)f(x)=
x
ax+b
,且f(3)=1,又方程f(x)=x有唯一解.
(I)求f(x)的解析式及方程f(x)=x的解;
(Ⅱ)當xn=f(xn-1)(n>1),數(shù)列{
1
xn
}
是何數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b為常數(shù),且a≠0,函數(shù)f(x)=-ax+b+axlnx,f(e)=2
(1)求實數(shù)b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當a=1時,直線y=t與曲線y=f(x)(x∈[
1e
,e]))有公共點,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•河東區(qū)一模)已知a、b為常數(shù),且
lim
x→1
x+a
-b
x-1
=
1
4
,則ab=
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•河東區(qū)二模)已知a,b為常數(shù),且a≠0,函數(shù)f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然對數(shù)的底數(shù)).
(1)求實數(shù)b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案