設(shè)MN是直角梯形ABCD兩腰的中點,DEABE(如圖).現(xiàn)將△ADE沿DE折起,使二面角ADEB為45°,此時點A在平面BCDE內(nèi)的射影恰為點B,則MN的連線與AE所成角的大小等于_________.

90°


解析:

如左圖,在平面AED內(nèi)作MQ∥AE交ED于Q,則MQ⊥ED,且Q為ED的中點,連結(jié)QN,則NQ⊥ED且QN∥EB,QN=EB,∠MQN為二面角ADEB的平面角,∴∠MQN=45°,∵AB⊥平面BCDE,又∠AEB=∠MQN=45°,MQ=AE=EB,在平面MQN內(nèi)作MP⊥BQ,得QP=MP=EB,故PB=QP=EB,故QMN是以∠QMN為直角的等腰三角形,即MN⊥QM,也即MN子AE所成角大小等于90°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、設(shè)M、N是直角梯形ABCD兩腰的中點,DE⊥AB于E(如圖)、現(xiàn)將△ADE沿DE折起,使二面角A-DE-B為45°,此時點A在平面BCDE內(nèi)的射影恰為點B,則M、N的連線與AE所成角的大小等于
90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M、N是直角梯形ABCD兩腰的中點,DEABE (如圖). 現(xiàn)將沿DE折起,使二面角的大小為,此時點A在平面BCDE內(nèi)的射影恰為點B,則M、N的連線與AE所成角的大小為              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12.設(shè)M、N是直角梯形ABCD兩腰的中點,DEABE(如圖).現(xiàn)將△ADE沿DE折起,使二面角ADEB為45°,此時點A在平面BCDE內(nèi)的射影恰為點B,則MN的連線與AE所成角的大小等于_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005年浙江省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)M、N是直角梯形ABCD兩腰的中點,DE⊥AB于E(如圖)、現(xiàn)將△ADE沿DE折起,使二面角A-DE-B為45°,此時點A在平面BCDE內(nèi)的射影恰為點B,則M、N的連線與AE所成角的大小等于   

查看答案和解析>>

同步練習(xí)冊答案