【題目】已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足

1)求數(shù)列的通項(xiàng)公式;

2)若nN*),求數(shù)列的前n項(xiàng)和;

3)是否存在實(shí)數(shù)使得對(duì)恒成立,若存在,求實(shí)數(shù)的取值范圍,若不存在說(shuō)明理由.

【答案】(1)(2)(3)存在,

【解析】

1)根據(jù)的關(guān)系,即可求出的通項(xiàng)公式;

2)由 ,可采用裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和;

3)假設(shè)存在實(shí)數(shù)λ,使得對(duì)一切正整數(shù)恒成立,

對(duì)一切正整數(shù)恒成立,只需滿足即可,利用作差法得出其單調(diào)性,即可求解.

1)當(dāng)n=1時(shí),a1=2-1(舍去).

當(dāng)n≥2時(shí),,

整理可得:(an+an-1)(an-an-1-1=0,可得an-an-1=1,

{an}是以a1=2為首項(xiàng),d=1為公差的等差數(shù)列.∴

2)由(1)得an=n+1,∴

3)假設(shè)存在實(shí)數(shù)λ,使得對(duì)一切正整數(shù)恒成立,

對(duì)一切正整數(shù)恒成立,只需滿足即可,

,則

當(dāng)

f1=1,f2=,f3=,f5)>f6)>

當(dāng)n=3時(shí)有最小值,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某生產(chǎn)企業(yè)對(duì)其所生產(chǎn)的甲、乙兩種產(chǎn)品進(jìn)行質(zhì)量檢測(cè),分別各抽查6件產(chǎn)品,檢測(cè)其重量的誤差,測(cè)得數(shù)據(jù)如下(單位:):

甲:13 15 13 8 14 21

乙:15 13 9 8 16 23

(1)畫(huà)出樣本數(shù)據(jù)的莖葉圖;

(2)分別計(jì)算甲、乙兩組數(shù)據(jù)的方差并分析甲、乙兩種產(chǎn)品的質(zhì)量(精確到0.1)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1,AA1ABAC2,ABAC,M是棱BC的中點(diǎn)點(diǎn)P在線段A1B

(1)若P是線段A1B的中點(diǎn),求直線MP與直線AC所成角的大;

(2)若的中點(diǎn),直線與平面所成角的正弦值為,求線段BP的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求解下列各題.

(1)已知,且為第一象限角,求,;

(2)已知,且為第三象限角,求,;

(3)已知,且為第四象限角,求,;

(4)已知,且為第二象限角,求,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)在橢圓上,且.

(1)求橢圓的方程;

(2)過(guò)的直線分別交橢圓,且,問(wèn)是否存在常數(shù),使得等差數(shù)列?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機(jī)挑選出5名同學(xué),他們的數(shù)學(xué)成績(jī)與物理成績(jī)如下表:

數(shù)據(jù)表明之間有較強(qiáng)的線性關(guān)系.

(1)求關(guān)于的線性回歸方程;

(2)該班一名同學(xué)的數(shù)學(xué)成績(jī)?yōu)?10分,利用(1)中的回歸方程,估計(jì)該同學(xué)的物理成績(jī);

(3)本次考試中,規(guī)定數(shù)學(xué)成績(jī)達(dá)到125分為優(yōu)秀,物理成績(jī)達(dá)到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯(cuò)誤概率不超過(guò)0.01的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?

參考數(shù)據(jù):回歸直線的系數(shù),.

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為:,直線的方程為.

(1)求證:直線恒過(guò)定點(diǎn);

(2)當(dāng)直線被圓截得的弦長(zhǎng)最短時(shí),求直線的方程;

(3)在(2)的前提下,若為直線上的動(dòng)點(diǎn),且圓上存在兩個(gè)不同的點(diǎn)到點(diǎn)的距離為,求點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直角邊OAx軸上,頂點(diǎn)B的坐標(biāo)為,直線CDAB于點(diǎn),交x軸于點(diǎn).

(1)求直線CD的方程;

(2)動(dòng)點(diǎn)Px軸上從點(diǎn)出發(fā),以每秒1個(gè)單位的速度向x軸正方向運(yùn)動(dòng),過(guò)點(diǎn)P作直線l垂直于x軸,設(shè)運(yùn)動(dòng)時(shí)間為t.

①點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在某個(gè)位置,使得?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

②請(qǐng)?zhí)剿鳟?dāng)t為何值時(shí),在直線l上存在點(diǎn)M,在直線CD上存在點(diǎn)Q,使得以OB為一邊,OB,M,Q為頂點(diǎn)的四邊形為菱形,并求出此時(shí)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x,y滿足約束條件.

1)求目標(biāo)函數(shù)的最值;

2)當(dāng)目標(biāo)函數(shù)在該約束條件下取得最大值5時(shí),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案