地球北緯45°圈上有A、B兩點(diǎn),點(diǎn)A在東經(jīng)30°處,點(diǎn)B在東經(jīng)120°處,如圖,若地球半徑為R,則A、B兩點(diǎn)在緯度圈上的劣弧長(zhǎng)為( 。
A、
2
πR
B、
2
4
πR
C、
2
2
π
R
D、
2
6
πR
考點(diǎn):球面距離及相關(guān)計(jì)算
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:由于A、B兩地在同一緯度圈上,可以先計(jì)算出它們的經(jīng)度差和45°的緯圓半徑,再求出求出A、B兩點(diǎn)在緯度圈上的劣弧長(zhǎng).
解答: 解:設(shè)北緯45°圈的半徑為r,
∵點(diǎn)A在東經(jīng)30°處,點(diǎn)B在東經(jīng)120°處,
∴甲、乙兩地對(duì)應(yīng)點(diǎn)的緯圓半徑是r=Rcos45°=
2
2
R,
經(jīng)度差是120°-30°=90°,
∴A、B兩點(diǎn)在緯度圈上的劣弧長(zhǎng)為
π
2
×
2
2
R=
2
4
πR

故選:B
點(diǎn)評(píng):本題主要考查了緯度圈上的劣弧長(zhǎng),考查空間想象力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)函數(shù):①f(x)=x2-2x;②f(x)=sinx,0≤x≤2π;③f(x)=2x+x;④f(x)=log2(2x-1),x>
1
2
.其中,能使f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)]恒成立的函數(shù)的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,莖葉圖記錄了甲、乙兩組各3名同學(xué)在期末考試中的數(shù)學(xué)成績(jī),則方差較小的那組同學(xué)成績(jī)的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙三位同學(xué)各自在周六、周日兩天中任選一天參加公益活動(dòng),則周六、周日都有同學(xué)參加公益活動(dòng)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果實(shí)數(shù)x,y滿足(x-3)2+(y-3)2=6.求:
(1)
y
x
的最大值與最小值;
(2)x+y的最大值與最小值;
(3)
(x-2)2+y2
的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x和y取遍所有實(shí)數(shù)時(shí),f(x,y)=(x+5-|cosy|)2+(x-|siny|)2≥m恒成立,則m的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x+
1
x
|-|x-
1
x
|

(1)指出f(x)=|x+
1
x
|-|x-
1
x
|
的基本性質(zhì)(結(jié)論不要求證明)并作出函數(shù)f(x)的圖象;
(2)關(guān)于x的不等式kf2(x)-2kf(x)+6(k-7)>0恒成立,求實(shí)數(shù)k的取值范圍;
(3)關(guān)于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個(gè)不同的實(shí)數(shù)解,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

[(sin2216°-1)÷2]÷sin18°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,acosC+
3
csinA-b-c=0.
(1)求A;
(2)若a=2,三角形面積為
3
,求b和c;
(3)若a=2,求b+c的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案