【題目】下列命題中正確的是(
A.若p∨q為真命題,則p∧q為真命題
B.“x>1”是“x2+x﹣2>0”的充分不必要條件
C.命題“x∈R,使得x2+x+1<0”的否定是“x∈R,都有x2+x+1>0”
D.命題“若x2>1,則x>1”的否命題為“若x2>1,則x≤1”

【答案】B
【解析】解:A.若p∨q為真命題,則p,q至少有一個為真,若則p∧q為真命題,則p,q需要同時為真,所以A錯誤.
B.由x2+x一2>0得x>1或x<﹣2,所以“x>1”是“x2+x一2>0”的充分不必要條件,所以B正確.
C.特稱命題的否定是全稱命題,所以命題“x∈R,使得x2+x+1<0”的否定是“x∈R,都有x2+x+1≥0”,所以C錯誤.
D.同時否定條件和結(jié)論得到命題的否命題,所以“若x2>1,則x>1”的否命題為“若x2≤1,則x≤1”,所以D錯誤.
故選B.
【考點精析】解答此題的關鍵在于理解命題的真假判斷與應用的相關知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=3x+bcosx,x∈R,則“b=0”是“函數(shù)f(x)為奇函數(shù)”的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:
①函數(shù)f(x)在x>0時是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
②正比例函數(shù)的圖象一定通過直角坐標系的原點;
③若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[1,2];
④y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).
其中正確命題的序號是 . (填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用反證法證明命題“若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一個是偶數(shù)”時,下列假設中正確的是(
A.假設a,b,c不都是偶數(shù)
B.假設a,b,c都不是偶數(shù)
C.假設a,b,c至多有一個是偶數(shù)
D.假設a,b,c至多有兩個是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題,其中正確的序號是(寫上所有正確命題的序號).
①函數(shù)f(x)=ln(x﹣1)+2的圖象恒過定點(1,2).
②若函數(shù)f(x)的定義域為[﹣1,1],則函數(shù)f(2x﹣1)的定義域為[﹣3,1].
③已知集合P={a,b},Q={﹣1,0,1},則映射f:P→Q中滿足f(b)=0的映射共有3個.
④若函數(shù)f(x)=log2(x2﹣2ax+1)的定義域為R,則實數(shù)a的取值范圍是(﹣1,1).
⑤函數(shù)f(x)=ex的圖象關于直線y=x對稱的函數(shù)解析式為y=lgx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當x<0時,f′(x)g(x)+f(x)g′(x)>0.且g(3)=0.則不等式f(x)g(x)<0的解集是(
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p,q是簡單命題,則“p∨q是真命題”是“¬p是假命題”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分有不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log3x+x﹣5的零點x0∈[a,b],且b﹣a=1,a,b∈N* , 則a+b=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A=[1,4],B=(﹣∞,a),若ABB,則實數(shù)a的取值范圍為

查看答案和解析>>

同步練習冊答案