3.如圖中程序執(zhí)行后輸出的結果是2.

分析 該程序是一個當型循環(huán)結構,模擬循環(huán)過程,即可得出正確的結論.

解答 解:該程序是一個當型循環(huán)結構.
第一步:S=0+5=5,n=5-1=4,滿足條件S<10;
第二步:S=5+4=9,n=4-1=3,滿足條件S<10;
第三步:s=9+3=12,n=3-1=2,不滿足條件S<10;
結束循環(huán),輸出n=2.
故答案為:2.

點評 本題考查了當型循環(huán)結構,熟練掌握當型循環(huán)結構的運算是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{x}^{2}}{{e}^{x}}$.
(1)若函數(shù)f(x)的曲線上一條切線經過點M(0,0),求該切線方程;
(2)求函數(shù)f(x)在區(qū)間[-3,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列各組函數(shù)表示相同函數(shù)的是( 。
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x2
C.f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$     g(t)=|t|D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=$\frac{5}{{2}^{x}}$-log2x的零點在區(qū)間(n,n+1)(n∈N)內,則n的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在平面直角坐標系xOy中,已知曲線C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(cosθ-2sinθ)=6.
(Ⅰ)寫出直線l的直角坐標方程和曲線C的參數(shù)方程;
(Ⅱ)在曲線C上求一點P,使點P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知關于x的一元二次方程:9x2+6mx=n2-4(m,n∈R).
(1)若m∈{x|0≤x≤3,x∈N*},n∈{x|0≤x≤2,x∈Z},求方程有兩個不相等實根的概率;
(2)若m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},求方程有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某地植被面積 x(公頃)與當?shù)貧鉁叵陆档亩葦?shù)y(°C)之間有如下的對應數(shù)據:
x(公頃)2040506080
y(°C)34445
(1)請用最小二乘法求出y關于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)根據(1)中所求線性回歸方程,如果植被面積為200公頃,那么下降的氣溫大約是多少℃?
(附:回歸方程系數(shù)公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x,x≥1}\\{1-3x,x<1}\end{array}}\right.$,若f[f(x0)]=-2,則x0的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若命題p:?x∈R,x2+1<0,則¬p:( 。
A.?x0∈R,x02+1>0B.?x0∈R,x02+1≥0C.?x∈R,x2+1>0D.?x∈R,x2+1≥0

查看答案和解析>>

同步練習冊答案