如圖,,是半徑為的圓的兩條弦,它們相交于的中點(diǎn),若, ,求的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D,E,F分別為弦AB與弦AC上的點(diǎn),且BC·AE=DC·AF,B,E,F,C四點(diǎn)共圓.
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B,E,F,C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點(diǎn)C作⊙O的切線,交BD的延長線于點(diǎn)P,交AD的延長線于點(diǎn)E.
(1)求證:AB2=DE·BC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AB經(jīng)過⊙O上的點(diǎn)C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連結(jié)EC、CD.
(Ⅰ)求證:直線AB是⊙O的切線;
(Ⅱ)若tan∠CED=,⊙O的半徑為3,求OA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四邊形ABCD內(nèi)接于,且AB是的直徑,過點(diǎn)D的的切線與BA的延長線交于點(diǎn)M.
(1)若MD=6,MB=12,求AB的長;
(2)若AM=AD,求∠DCB的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com