設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x,恒有f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2.
(1)求證:f(x)是周期函數(shù);
(2)當(dāng)x∈[2,4]時(shí),求f(x)的解析式;
(3)計(jì)算f(0)+f(1)+f(2)+…+f(2014)的值.
(1)見解析(2)f(x)=x2-6x+8,x∈[2,4].(3)1
【解析】(1)證明:因?yàn)?/span>f(x+2)=-f(x),
所以f(x+4)=-f(x+2)=f(x),
所以f(x)是周期為4的周期函數(shù).
(2)【解析】
因?yàn)?/span>x∈[2,4],
所以-x∈[-4,-2],4-x∈[0,2],
所以f(4-x)=2(4-x)-(4-x)2=-x2+6x-8.
又f(4-x)=f(-x)=-f(x),所以-f(x)=-x2+6x-8,即f(x)=x2-6x+8,x∈[2,4].
(3)【解析】
因?yàn)?/span>f(0)=0,f(1)=1,f(2)=0,f(3)=-1,
又f(x)是周期為4的周期函數(shù),
所以f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=0,
所以f(0)+f(1)+f(2)+…+f(2014)=f(0)+f(1)+f(2)=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第8課時(shí)練習(xí)卷(解析版) 題型:解答題
畫出函數(shù)y=的圖象,并利用圖象回答:k為何值時(shí),方程=k無(wú)解?有一個(gè)解?有兩個(gè)解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第6課時(shí)練習(xí)卷(解析版) 題型:填空題
設(shè)abc>0,二次函數(shù)f(x)=ax2+bx+c的圖象可能是________.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第5課時(shí)練習(xí)卷(解析版) 題型:解答題
畫出下列函數(shù)的圖象.
(1)y=2x-1,x∈Z,|x|≤2;
(2)y=2x2-4x-3(0≤x<3);
(3)y=(lgx+|lgx|).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第4課時(shí)練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)y=f(x)滿足對(duì)任意的x∈R,f(x)≥0且f2(x+1)+f2(x)=9.已知當(dāng)x∈[0,1)時(shí),有f(x)=2-|4x-2|,則f =________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第4課時(shí)練習(xí)卷(解析版) 題型:解答題
判斷下列函數(shù)的奇偶性:
(1)f(x)=x4+x;
(2)f(x)=
(3)f(x)=lg(x+).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第3課時(shí)練習(xí)卷(解析版) 題型:解答題
是否存在實(shí)數(shù)a,使函數(shù)f(x)=loga(ax2-x)在區(qū)間[2,4]上是增函數(shù)?如果存在,說(shuō)明a可取哪些值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第2課時(shí)練習(xí)卷(解析版) 題型:解答題
已知二次函數(shù)f(x)=ax2+bx(a、b為常數(shù),且a≠0)滿足條件:f(x-1)=f(3-x),且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在實(shí)數(shù)m、n(m<n),使f(x)定義域和值域分別為[m,n]和[4m,4n]?如果存在,求出m、n的值;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第14課時(shí)練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=2x2+m的圖象與函數(shù)g(x)=ln|x|的圖象有四個(gè)交點(diǎn),則實(shí)數(shù)m的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com