【題目】若直線l的極坐標(biāo)方程為,曲線C的參數(shù)方程為(為參數(shù)).

若曲線上存在MN兩點(diǎn)關(guān)于直線l對(duì)稱,求實(shí)數(shù)m的值;

若直線與曲線相交于P,Q兩點(diǎn),且,求實(shí)數(shù)m的取值范圍.

【答案】(1)(2)

【解析】

直接利用參數(shù)方程直角坐標(biāo)方程和極坐標(biāo)方程之間的轉(zhuǎn)換進(jìn)一步利用對(duì)稱關(guān)系的應(yīng)用求出結(jié)果.

利用直線和圓的位置關(guān)系的應(yīng)用建立不等量關(guān)系求出參數(shù)m的取值范圍.

解:直線l的極坐標(biāo)方程為

化為直角坐標(biāo)方程得

曲線C的參數(shù)方程為為參數(shù)

化為普通方程得

從而得到圓心為,半徑為3

根據(jù)題意知圓心在直線l

,

設(shè)圓心到直線l的距離為d

所以解得由點(diǎn)到直線距離公式得:

解得,

又直線與圓必須相交,則

解得

綜上,滿足條件的實(shí)數(shù)m的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知等差數(shù)列的公差為,前項(xiàng)和為,且

1)求數(shù)列的通項(xiàng)公式與前項(xiàng)和;

2)將數(shù)列的前四項(xiàng)抽取其中一項(xiàng)后,剩下三項(xiàng)按原來(lái)順序恰為等比數(shù)列的前三項(xiàng),記數(shù)列的前項(xiàng)和為,若存在,使得對(duì)任意,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:

將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;

設(shè)有一個(gè)回歸方程,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;

線性回歸方程必過(guò)();

在一個(gè)2×2列聯(lián)中,由計(jì)算得則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系;

` 其中錯(cuò)誤的個(gè)數(shù)是 ( )

本題可以參考獨(dú)立性檢驗(yàn)臨界值表:


0.5

0.40

0.25

0.15

0.10

0.05

0.25

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.535

7.879

10.828

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十三五規(guī)劃確定了到2020年消除貧困的宏偉目標(biāo),打響了精準(zhǔn)扶貧的攻堅(jiān)戰(zhàn),為完成脫貧任務(wù),某單位在甲地成立了一家醫(yī)療器械公司吸納附近貧困村民就工,已知該公司生產(chǎn)某種型號(hào)醫(yī)療器械的月固定成本為20萬(wàn)元,每生產(chǎn)1千件需另投入5.4萬(wàn)元,設(shè)該公司一月內(nèi)生產(chǎn)該型號(hào)醫(yī)療器械x千件且能全部銷(xiāo)售完,每千件的銷(xiāo)售收入為萬(wàn)元,已知

1)請(qǐng)寫(xiě)出月利潤(rùn)y(萬(wàn)元)關(guān)于月產(chǎn)量x(千件)的函數(shù)解析式;

2)月產(chǎn)量為多少千件時(shí),該公司在這一型號(hào)醫(yī)療器械的生產(chǎn)中所獲月利潤(rùn)最大?并求出最大月利潤(rùn)(精確到0.1萬(wàn)元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面ABCD,底面ABCD為梯形,,,,EPC的中點(diǎn).

證明:平面PAD

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱柱中,四邊形是長(zhǎng)方形,,,,,連接

證明:平面平面;

,,是線段上的一點(diǎn),且,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)消費(fèi)者協(xié)會(huì)為了解本社區(qū)居民網(wǎng)購(gòu)消費(fèi)情況,隨機(jī)抽取了100位居民作為樣本,就最近一年來(lái)網(wǎng)購(gòu)消費(fèi)金額(單位:千元),網(wǎng)購(gòu)次數(shù)和支付方式等進(jìn)行了問(wèn)卷調(diào)查.經(jīng)統(tǒng)計(jì)這100位居民的網(wǎng)購(gòu)消費(fèi)金額均在區(qū)間內(nèi),按分成6組,其頻率分布直方圖如圖所示.

1)估計(jì)該社區(qū)居民最近一年來(lái)網(wǎng)購(gòu)消費(fèi)金額的中位數(shù);

2)將網(wǎng)購(gòu)消費(fèi)金額在20千元以上者稱為網(wǎng)購(gòu)迷,補(bǔ)全下面的列聯(lián)表,并判斷有多大把握認(rèn)為網(wǎng)購(gòu)迷與性別有關(guān)系

總計(jì)

網(wǎng)購(gòu)迷

20

非網(wǎng)購(gòu)迷

45

總計(jì)

100

附:

臨界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果函數(shù)的導(dǎo)函數(shù)為,在區(qū)間上存在,使得,,則稱為區(qū)間上的“雙中值函數(shù)“已知函數(shù)上的“雙中值函數(shù)“,則實(shí)數(shù)m的取值范圍是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,,為線段上一點(diǎn).

(1)若,則在線段上是否存在點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由

(2)己知,若異面直線角,二而角的余弦值為,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案