如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).

(1)求證:∥平面;
(2)求證:AC⊥BC1.
(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

試題分析:(1)設(shè)BC1與CB1交于點(diǎn)O,連接OD,利用三角形中位線(xiàn)性質(zhì),證明OD∥AC1,利用線(xiàn)面平行的判定,可得AC1∥平面CDB1;(2)要證明AC⊥BC1,可以先證明直線(xiàn)AC⊥平面BCC1B1, 在DABC中,AC=3,BC=4,AB=5,∴AB2=AC2+BC2,故AC⊥BC,∵C1C⊥平面ABC,ACÌ平面ABC,∴AC⊥C1C,又∵C1CÌ平面BB1C1C,BCÌ平面BB1C1C,且C1C∩BC=C,∴AC⊥平面BB1C1C.
試題解析:(1)證明:設(shè)BC1與CB1交于點(diǎn)O,則O為BC1的中點(diǎn),
在△ABC1中,連接OD,
∵D,O分別為AB,BC1的中點(diǎn),
∴OD為△ABC1的中位線(xiàn),
∴OD∥AC1,
又∵AC1Ú平面CDB1,OD?平面CDB1,
∴AC1∥平面CDB1;
(2)在DABC中,AC=3,BC=4,AB=5,
∴AB2=AC2+BC2,故AC⊥BC,
∵C1C⊥平面ABC,ACÌ平面ABC,
∴AC⊥C1C,          
又∵C1CÌ平面BB1C1C,BCÌ平面BB1C1C,且C1C∩BC=C,
∴AC⊥平面BB1C1C,
又∵BC1Ì平面BB1C1C,
∴AC⊥BC1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,⊥平面,

(1)求證:
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正三棱柱ABC-A'B'C'中,D是BC的中點(diǎn),AA'=AB=2.

(1)求證:A'C//平面AB'D;
(2)求二面角D一AB'一B的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱錐P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一點(diǎn),且CD⊥平面PAB.

(1)求證:AB⊥平面PCB;
(2)求異面直線(xiàn)AP與BC所成角的大;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P—ABCD中,ABCD為平行四邊形,且BC⊥平面PAB,PA⊥AB,M為PB的中點(diǎn),PA=AD=2.

(Ⅰ)求證:PD//平面AMC;
(Ⅱ)若AB=1,求二面角B—AC—M的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,長(zhǎng)方體中點(diǎn).

(1)求證:;
(2)在棱上是否存在一點(diǎn),使得平面?若存在,求的長(zhǎng);若不存在,說(shuō)明理由;
(3)若二面角的大小為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知空間兩條不同的直線(xiàn)和兩個(gè)不同的平面,則下列命題正確的是(   )
A.若B.若
C.D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若關(guān)于直線(xiàn)與平面,有下列四個(gè)命題:
①若,,且,則;
②若,,且,則;
③若,,且,則;
④若,,且,則
其中真命題的序號(hào)(  )
A.①②B.③④ C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,過(guò)對(duì)角線(xiàn)BD1的一個(gè)平面交AA1于E,交CC1于F,得四邊形BFD1E,給出下列結(jié)論:
①四邊形BFD1E有可能為梯形
②四邊形BFD1E有可能為菱形
③四邊形BFD1E在底面ABCD內(nèi)的投影一定是正方形
④四邊形BFD1E有可能垂直于平面BB1D1D
⑤四邊形BFD1E面積的最小值為
其中正確的是      (請(qǐng)寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案