如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD=AD,AF⊥PC于點F,F(xiàn)E∥CD交PD于點E.
(1)證明:CF⊥平面ADF;
(2)若AC∩BD=O,證明FO∥平面AED.
考點:直線與平面垂直的判定,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)要證CF⊥平面ADF,需要證明CF垂直面ADF內(nèi)兩相交直線,由AF⊥PC于點F,只需證明AD⊥CF
(2)根據(jù)已知和(1),只要證明F是CP中點即可.
解答: 證明:(1)由PD⊥平面ABCD,得PD⊥AD又AD⊥DC,AD∩DC=C根據(jù)線面垂直的判定定理,得AD⊥平面PDC
⇒又CF?面PCD,得AD⊥CF,又AF⊥CF,AF∩CF=C根據(jù)線面垂直的判定定理,得CF⊥平面ADF
(2)因為AD=PD,由(1)知,F(xiàn)為PC中點.∵ABCD為正方形,AC∩BD=O,∴O是AC中點,連接FO,
則FO是三角形ACP的邊AP的中位線,∴FO∥AP,又∵AP?面APD,F(xiàn)O?面APD,根據(jù)線面平行的判定定理,
∴FO∥面APD,即FO∥面AED.
點評:本題考查了線面垂直于線面平行的判定,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程
|x|
x+4
=kx2
有四個不同的實數(shù)解,則k的取值范圍為( 。
A、(0,1)
B、(
1
4
,1)
C、(
1
4
,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

登上一個四級的臺階,可以選擇的方式共有( 。┓N.
A、3B、4C、5D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于下列命題:
①若關(guān)于x的不等式ax2+2ax+1>0恒成立,則a∈(0,1);
②已知函數(shù)f(x)=log2
a-x
1+x
為奇函數(shù),則實數(shù)a的值為1;
③設(shè)a=sin
2014π
3
,b=cos
2014π
3
,c=tan
2014π
3
,則a<b<c;
④△ABC中角A、B、C的對邊分別為a,b,c,若a=2,b=5,A=
π
6
,則△ABC有兩組解;其中正確命題的序號是
 
(請將所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,且a1=2,an+1=2Sn+2.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}的各項均為正數(shù),且bn
n
an
n
an+2
的等比中項,求bn的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了某種需要,某班課外活動經(jīng)常舉行一種叫“電腦闖關(guān)比賽”的活動,在一次“電腦闖關(guān)比賽”中,A、B兩位同學(xué)在同等的條件下進(jìn)行闖關(guān)賽,為了預(yù)測他們的闖關(guān)能力,現(xiàn)隨機抽取這兩個同學(xué)以往一起闖關(guān)比賽的結(jié)果為:(a,b),(a,
.
b
),(a,b),(
.
a
,b),(
.
a
.
b
),(a,b),(a,b),(a,b),(
.
a
,b),(a,
.
b
),(
.
a
.
b
),(a,b),(a,
.
b
),(
.
a
,b),(a,b)其中a,
.
a
分別表示A同學(xué)闖關(guān)成功和失;b,
.
b
分別表示B同學(xué)闖關(guān)成功和失敗.
(1)若闖關(guān)成功,則給該同學(xué)記2分,否則記0分,試計算A、B兩位同學(xué)闖關(guān)成績的平均數(shù)和方差,并比較A、B兩位同學(xué)的闖關(guān)能力;
(2)現(xiàn)A、B兩位同學(xué)只進(jìn)行一次對抗賽,試估算至少有一位同學(xué)闖關(guān)成功的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
-x2+4x-10,x∈(-∞,2]
log2(x-1)-6,x∈(2,+∞)
,若f(6-a2)>f(5a),則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點A(1,-2),B(-3,4),則以AB為直徑的圓的方程為(  )
A、(x+1)2+(y-1)2=13
B、(x-1)2+(y+1)2=13
C、(x+1)2+(y-1)2=52
D、(x-1)2+(y+1)2=52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=loga(x-1)+1(a>0且a≠1)的圖象必經(jīng)過點( 。
A、(0,1)
B、(1,0)
C、(2,1)
D、(0,2)

查看答案和解析>>

同步練習(xí)冊答案