【題目】已知橢圓C: =1(a>b>0)的離心率為 ,橢圓C的長軸長為4.
(1)求橢圓C的方程;
(2)已知直線l:y=kx+ 與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請說明理由.
【答案】
(1)解:設(shè)橢圓的焦半距為c,則由題設(shè),得: ,
解得 所以b2=a2﹣c2=4﹣3=1,
故所求橢圓C的方程為 +x2=1.
(2)解:存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O.
理由如下:
設(shè)點(diǎn)A(x1,y1),B(x2,y2),
將直線l 的方程y=kx+ 代入 +x2=1,
并整理,得(k2+4)x2+2 kx﹣1=0.(*)
則x1+x2=﹣ ,x1x2=﹣ .
因?yàn)橐跃段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O,
所以 =0,即x1x2+y1y2=0.
又y1y2=k2x1x2+ k(x1+x2)+3,
于是﹣ ﹣ +3=0,解得k=± ,
經(jīng)檢驗(yàn)知:此時(shí)(*)式的△>0,符合題意.
所以當(dāng)k=± 時(shí),以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O.
【解析】(1)設(shè)橢圓的焦半距為c,則由題設(shè),得: ,解得a,b,c值,可得橢圓C的方程;(2)設(shè)點(diǎn)A(x1 , y1),B(x2 , y2),將直線l 的方程y=kx+ 代入 +x2=1,利用韋達(dá)定理,及向量垂直的充要條件,可求出滿足條件的k值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面半徑和高均為4的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點(diǎn),若過直徑CD與點(diǎn)E的平面與圓錐側(cè)面的交線是以E為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)P的距離為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖的形狀、大小如圖所示.
(1)求該幾何體的體積;
(2)設(shè)點(diǎn)D、E分別在線段AC、BC上,且DE∥平面ABB1A1 , 求證:DE∥A1B1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐A﹣BCDE中,底面BCDE為平行四邊形,平面ABE⊥平面BCDE,AB=AE,DB=DE,∠BAE=∠BDE=90°
(1)求異面直線AB與DE所成角的大;
(2)求二面角B﹣AE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長春市的“名師云課”活動自開展以來獲得廣大家長和學(xué)子的高度贊譽(yù),在我市推出的第二季名師云課中,數(shù)學(xué)學(xué)科共計(jì)推出36節(jié)云課,為了更好地將課程內(nèi)容呈現(xiàn)給廣大學(xué)子,現(xiàn)對某一時(shí)段云課的點(diǎn)擊量進(jìn)行統(tǒng)計(jì):
點(diǎn)擊量 | |||
節(jié)數(shù) | 6 | 18 | 12 |
(Ⅰ)現(xiàn)從36節(jié)云課中采用分層抽樣的方式選出6節(jié),求選出的點(diǎn)擊量超過3000的節(jié)數(shù).
(Ⅱ)為了更好地搭建云課平臺,現(xiàn)將云課進(jìn)行剪輯,若點(diǎn)擊量在區(qū)間內(nèi),則需要花費(fèi)40分鐘進(jìn)行剪輯,若點(diǎn)擊量在區(qū)間內(nèi),則需要花費(fèi)20分鐘進(jìn)行剪輯,點(diǎn)擊量超過3000,則不需要剪輯,現(xiàn)從(Ⅰ)中選出的6節(jié)課中任意取出2節(jié)課進(jìn)行剪輯,求剪輯時(shí)間為40分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)榧螦,已知集合B={x|1<x<3},C={x|x≥m},全集為R.
(1)求(RA)∩B;
(2)若(A∪B)∩C≠,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校對高三年級的學(xué)生進(jìn)行體檢,現(xiàn)將高三男生的體重(單位:㎏)數(shù)據(jù)進(jìn)行整理后分成五組,并繪制頻率分布直方圖(如圖所示).根據(jù)一般標(biāo)準(zhǔn),高三男生的體重超過65㎏屬于偏胖,低于55㎏屬于偏瘦,已知圖中從左到右第一、第三、第四、第五小組的頻率分別為0.25、0.20、0.10、0.05,第二小組的頻率數(shù)為400,則該校高三年級的男生總數(shù)和體重正常的頻率分別為( )
A.1000,0.50
B.800,0.50
C.1000,0.60
D.800,0.60
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m),m∈R所表示的曲線C的性狀,下列說法正確的是( )
A.對于m∈(1,3),曲線C為一個(gè)橢圓
B.m∈(﹣∞,1)∪(3,+∞)使曲線C不是雙曲線
C.對于m∈R,曲線C一定不是直線
D.m∈(1,3)使曲線C不是橢圓
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)M(3,1),圓(x﹣1)2+(y﹣2)2=4.
(1)求過M點(diǎn)的圓的切線方程;
(2)若直線ax﹣y+4=0與圓相交于A、B兩點(diǎn),且弦AB的長為2 ,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com