如圖,四棱錐中,底面是菱形,,,的中點,點在側(cè)棱上.

(1)求證:⊥平面;
(2)若的中點,求證://平面;
(3)若,試求的值.

(1)詳見解析(2)詳見解析(3)

解析試題分析:(1)由線面垂直判定定理,要證線面垂直,需證垂直平面內(nèi)兩條相交直線,由,的中點,易得垂直于,再由底面是菱形,得三角形為正三角形,所以垂直于,(2)由線面平行判定定理,要證線面平行,需證平行于平面內(nèi)一條直線,根據(jù)的中點,聯(lián)想到取AC中點O所以O(shè)Q為△PAC中位線.所以O(shè)Q // PA注意在寫定理條件時,不能省,要全面.例如,線面垂直判定定理中有五個條件,線線垂直兩個,相交一個,線在面內(nèi)兩個;線面平行判定定理中有三個條件,平行一個,線在面內(nèi)一個,線在面外一個,(3)研究體積問題關(guān)鍵在于確定高,由于兩個底面共面,所以求的值就轉(zhuǎn)化為求對應高的長度比.
試題解析:證明:(1)因為E是AD的中點,PA=PD,所以AD⊥PE.
因為底面ABCD是菱形,∠BAD=,所以AB=BD,又因為E是AD的中點,所以 AD⊥BE.
因為PE∩BE=E,所以AD⊥平面PBE.         4分
(2)連接AC交BD于點O,連結(jié)OQ.因為O是AC中點,
Q是PC的中點,所以O(shè)Q為△PAC中位線.所以O(shè)Q//PA.  7分
因為PA平面BDQ,OQ平面BDQ.所以PA//平面BDQ.        9分
(3)設(shè)四棱錐P-BCDE,Q-ABCD的高分別為,,所以VP-BCDE=SBCDE,VQ-ABCD=SABCD.  10分
因為VP-BCDE=2VQ-ABCD,且底面積SBCDE=SABCD.  12分
所以,因為,所以.     14分
考點:線面垂直判定定理, 線面平行判定定理,錐的體積.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在棱BB1上運動.

(1)證明:AD⊥C1E;
(2)當異面直線AC,C1E所成的角為60°時,求三棱錐C1A1B1E的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線EF把四邊形CDFE折起如圖b,使平面CDFE⊥平面ABEF.

(1)求證:AB⊥平面BCE;
(2)求三棱錐C ­ADE體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直三棱柱中, ,,求:

(1)異面直線所成角的大。
(2)四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面為直角梯形,且,平面底面,的中點,是棱的中點,.

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在多面體ABCDEF中,底面ABCD是邊長為2的正方形,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分別是CE和CF的中點.

(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:平面BDGH//平面AEF;
(Ⅲ)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正三棱柱ABC—A1B1C1的各棱長都相等,M、E分別是和AB1的中點,點F在BC上且滿足BF∶FC=1∶3.

(1)求證:BB1∥平面EFM;
(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖所示,矩形的對角線交于點G,AD⊥平面,,,上的點,且BF⊥平面ACE

(1)求證:平面
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是矩形邊上的點,邊的中點,,現(xiàn)將沿邊折至位置,且平面平面.

⑴求證:平面平面;
⑵求四棱錐的體積.

查看答案和解析>>

同步練習冊答案