【題目】設(shè)函數(shù)是定義在的偶函數(shù),在區(qū)間是減函數(shù),且圖象過(guò)點(diǎn)原點(diǎn),則不等式的解集為________.
【答案】
【解析】
由題意和偶函數(shù)的性質(zhì)判斷出函數(shù)f(x)的對(duì)稱性,結(jié)合條件畫(huà)出f(x)的圖象,根據(jù)函數(shù)的單調(diào)性和圖象,求出不等式(x﹣1)f(x)<0的解集.
∵函數(shù)y=f(x+1)是定義在(﹣∞,0)∪(0,+∞)上的偶函數(shù),
∴f(x+1)=f(﹣x+1),則f(x)的圖象關(guān)于直線x=1對(duì)稱,
∵函數(shù)f(x)在(﹣∞,1)上是減函數(shù),
∴在(1,+∞)上是增函數(shù),
又f(0)=0,∴的大致圖像如圖所示:
∴當(dāng)x>1時(shí),f(x)<0=f(2),解得1<x<2
當(dāng)x<1時(shí),f(x)>0=f(0),得x<0,即x<0,
綜上,不等式(x﹣1)f(x)<0的解集是(﹣∞,0)∪(1,2),
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間滿足關(guān)系式(為大于0的常數(shù)),現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
(1)求關(guān)于的回歸方程;(提示:與有線性相關(guān)關(guān)系)
(2)按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時(shí)為優(yōu)等品,現(xiàn)從抽取的6件合格產(chǎn)品再任選3件,求恰好取得兩件優(yōu)等品的概率.
參考數(shù)據(jù)及公式:
,,,
對(duì)于樣本(),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是拋物線:上異于原點(diǎn)的動(dòng)點(diǎn), 是平面上兩個(gè)定點(diǎn).當(dāng)的縱坐標(biāo)為時(shí),點(diǎn)到拋物線焦點(diǎn)的距離為.
(1)求拋物線的方程;
(2)直線交于另一點(diǎn),直線交于另一點(diǎn),記直線的斜率為,直線的斜率為. 求證: 為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)寫(xiě)出下列兩組誘導(dǎo)公式:
①關(guān)于與的誘導(dǎo)公式;
②關(guān)于與的誘導(dǎo)公式.
(2)從上述①②兩組誘導(dǎo)公式中任選一組,用任意角的三角函數(shù)定義給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種蔬菜從1月1日起開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時(shí)間(單位:10天)的數(shù)據(jù)如下表:
時(shí)間 | 5 | 11 | 25 |
種植成本 | 15 | 10.8 | 15 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,,,中(其中),選取一個(gè)合適的函數(shù)模型描述該蔬菜種植成本與上市時(shí)間的變化關(guān)系;
(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時(shí)的上市時(shí)間及最低種植成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,且對(duì)任意的有. 當(dāng)時(shí),,.
(1)求并證明的奇偶性;
(2)判斷的單調(diào)性并證明;
(3)求;若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一個(gè)八面體的各條棱長(zhǎng)為1,四邊形ABCD為正方形,下列說(shuō)法
①該八面體的體積為;
②該八面體的外接球的表面積為;
③E到平面ADF的距離為;
④EC與BF所成角為60°;
其中不正確的個(gè)數(shù)為
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年3月山東省高考改革實(shí)施方案發(fā)布:2020年夏季高考開(kāi)始全省高考考生總成績(jī)將由語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門統(tǒng)一高考成績(jī)和學(xué)生自主選擇的普通高中學(xué)業(yè)水平等級(jí)性考試科目的成績(jī)共同構(gòu)成.省教育廳為了解正就讀高中的學(xué)生家長(zhǎng)對(duì)高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長(zhǎng)作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見(jiàn).右面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.
(Ⅰ)請(qǐng)根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表:
贊成 | 不贊成 | 合計(jì) | |
城鎮(zhèn)居民 | |||
農(nóng)村居民 | |||
合計(jì) |
(Ⅱ)試判斷我們是否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?.
【附】,其中.
0.150 | 0.100 | 0.050 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C滿足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對(duì)的邊,在下列不等式一定成立的是( )
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com