10.如圖,設(shè)計一個程序為秘鑰,當接收方收到密文為14,9,23,28時,解密得到的明文為( 。
A.4,6,1,7B.7,6,1,4C.1,6,4,7D.6,4,1,7

分析 利用接收方收到密文14,9,23,28及題目提供的加密規(guī)則,建立關(guān)于a,b,c,d的方程組,從而可解得解密得到的明文6,4,1,7.

解答 解:設(shè)明文為a,b,c,d,
∴4d=28,2c+3d=23,2b+c=9,a+2b=14,
∴d=7,c=1,b=4,a=6,
故選D.

點評 本題主要考查了算法中的順序結(jié)構(gòu),同時考查實際應(yīng)用能力等數(shù)學基本能力,要加強新的信息與創(chuàng)新題,是個基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.為了調(diào)查學生星期天晚上學習時間利用問題,某校從高二年級1000名學生(其中走讀生450名,住宿生550名)中,采用分層抽樣的方法抽取n名學生進行問卷調(diào)查,根據(jù)問卷取得了這n名同學每天晚上學習時間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組①[0,30)②[30,60)③[60,90),④[90,120),⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),得到頻率分布直方圖如下,已知抽取的學生中星期天晚上學習時間少于60分鐘的人數(shù)為5人:
(I)求n的值并補全下列頻率分布直方圖;
(II)如果把“學生晚上學習時間達到兩小時”作為是否充分利用時間的標準,對抽取的n名學生,完成下列2×2列聯(lián)表:
利用時間充分利用時間不充分總計
走讀生
住宿生10
總計
據(jù)此資料,你是否認為學生“利用時間是否充分”與走讀、住宿有關(guān)?
(III)若在第①組、第 ②組、第⑧組中共抽出3人調(diào)查影響有效利用時間的原因,記抽到“學習時間少于60分鐘”的學生人數(shù)為X,求X的分布列及期望;
參考公式:${k^2}=\frac{{n{{({{n_{11}}{n_{22}}-{n_{12}}{n_{21}}})}^2}}}{{{n_{11}}{n_{21}}{n_{12}}{n_{22}}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=ex+2ax.
(l)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上的最小值為0,求a的值;
(3)若對于任意x≥0,f(x)≥e-x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.由曲線y=$\sqrt{x+1}$,直線y=x-1及x=-1所圍成的圖形的面積為(  )
A.4B.$\frac{10}{3}$C.6D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=ax2-x(x∈R,a≠0),g(x)=lnx.若函數(shù)h(x)=f(x)-g(x)有兩個不同的零點,則a的取值范圍是0<a<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列三個命題:
①命題“若x2-x=0,則x=1”的逆否命題為“若x≠1,則x2-x≠0”;
②若p:x(x-2)≤0,q:log2x≤1,則p是q的充要條件;
③若命題p:存在x∈R,使得2x<x2,則?p:任意x∈R,均有2x≥x2;
其中正確命題的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C以坐標軸為對稱軸,以坐標原點為對稱中心,橢圓的一個焦點為F(1,0),點$M({\frac{{\sqrt{3}}}{2},\frac{{\sqrt{6}}}{2}})$在橢圓上,
(Ⅰ)求橢圓C的方程.
(Ⅱ)斜率為k的直線l過點F且不與坐標軸垂直,直線l交橢圓于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知定點A(0,1),B(0,-1),C(1,0),動點P滿足$\overrightarrow{AP}$•$\overrightarrow{BP}$=2|$\overrightarrow{CP}$|2,則|2$\overrightarrow{AP}$+$\overrightarrow{BP}$|的最大值為( 。
A.$\sqrt{37}$-3B.$\sqrt{37}$+3C.$\sqrt{10}$D.$\sqrt{82}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.正三棱錐P-ABC內(nèi)接于球O,球心O在底面ABC上,且$AB=\sqrt{3}$,則球的表面積為4π.

查看答案和解析>>

同步練習冊答案