【題目】已知, , .
(1)討論函數(shù)的單調(diào)性;
(2)記,設(shè), 為函數(shù)圖象上的兩點(diǎn),且.
(。┊(dāng), 時(shí),若在處的切線相互垂直,求證: ;
(ⅱ)若在點(diǎn)處的切線重合,求的取值范圍.
【答案】(1)時(shí), 在上單調(diào)遞減,即時(shí), 在和上都是單調(diào)遞減的,在上是單調(diào)遞增的;(2)(i)見解析;(ii).
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),通過討論 的范圍,判斷函數(shù)的單調(diào)性即可;(2)(i)求出 的解析式,根據(jù)基本不等式的性質(zhì)判斷即可;(ii)求出 的坐標(biāo),分別求出曲線在的切線方程,結(jié)合函數(shù)的單調(diào)性確定 的范圍即可.
試題解析:(1),則,
當(dāng)即時(shí), , 在上單調(diào)遞減,
當(dāng)時(shí)即時(shí), ,
此時(shí)在和上都是單調(diào)遞減的,在上是單調(diào)遞增的;
(2)(i),據(jù)題意有,又,
則且, ,
法1: ,
當(dāng)且僅當(dāng)即, 時(shí)取等號(hào).
法2: , ,
當(dāng)且僅當(dāng)時(shí)取等號(hào).
(ii)要在點(diǎn)處的切線重合,首先需要在點(diǎn)處的切線的斜率相等,
而時(shí), ,則必有,即, ,
處的切線方程是:
處的切線方程是: ,即,
據(jù)題意則, ,
設(shè), , ,
在上, , 在上單調(diào)遞增,
則,又在恒成立,
即當(dāng)時(shí), 的值域是,
故,即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,平面PAD⊥底面ABCD,其中底面ABCD為等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q為PD的中點(diǎn).
(Ⅰ)證明:CQ∥平面PAB;
(Ⅱ)求直線PD與平面AQC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張先生知道清晨從甲地到乙地有好、中、差三個(gè)班次的客車.但不知道具體誰先誰后.他打算:第一輛看后一定不坐,若第二輛比第一輛舒服,則乘第二輛;否則坐第三輛.問張先生坐到好車的概率和坐到差車的概率分別是( )
A. 、
B. 、
C. 、
D. 、
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,g(x)=f(x)﹣a
(1)當(dāng)a=2時(shí),求函數(shù)g(x)的零點(diǎn);
(2)若函數(shù)g(x)有四個(gè)零點(diǎn),求a的取值范圍;
(3)在(2)的條件下,記g(x)得四個(gè)零點(diǎn)分別為x1 , x2 , x3 , x4 , 求x1+x2+x3+x4的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出盒該產(chǎn)品獲利潤元;未售出的產(chǎn)品,每盒虧損元.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示,該同學(xué)為這個(gè)開學(xué)季購進(jìn)了盒該產(chǎn)品,以(單位:盒, )表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量的中位數(shù);
(2)將表示為的函數(shù);
(3)根據(jù)直方圖估計(jì)利潤不少于元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),且x∈[ ,π].
(1)求 及| + |;
(2)求函數(shù)f(x)= +| + |的最大值,并求使函數(shù)取得最大值時(shí)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的首項(xiàng)a1= ,公比q滿足q>0且q≠1,又已知a1 , 5a3 , 9a5成等差數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log3 ,記Tn= ,是否存在最大的整數(shù)m,使得對(duì)任意n∈N* , 均有Tn> 成立?若存在,求出m,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,且a+b+c=8. (Ⅰ)若a=2,b= ,求cosC的值;
(Ⅱ)若sinAcos2 +sinBcos2 =2sinC,且△ABC的面積S= sinC,求a和b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為1的兩個(gè)全等的等腰直角三角形,則該幾何體的表面積是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com