【挑戰(zhàn)自我】
如圖,已知PD⊥平面ABCD,AD⊥DC,AD∥BC,PD∶DCBC=1∶1∶.
(1)求二面角D-PBC的正切值;
(2)當(dāng)AD∶BC的值是多少時(shí),能使平面PAB⊥平面PBC?證明你的結(jié)論.
(1)∴二面角D-PBC的正切值為
(2)∴當(dāng)平面PAB⊥平面PBC時(shí),
:(1)如圖,取PC中點(diǎn)E,連DE.∵PD=DC,∴DE⊥PC.又∵BC⊥DCBC⊥PD, ∴BC⊥平面PDC,則面BPC⊥面PDC,∴DE⊥面PBC.過(guò)E作EF⊥PB于F,連DF,則由三垂線定理有DF⊥PB.∴∠DFE=θ為二面角D-PBC的平面角.
設(shè)PD=DC=1,則BC,DE=,PC.又∵在Rt△DEF中,tanθ=
∴二面角D-PBC的正切值為
(2)AD∶BC=1∶2時(shí),平面PAB⊥平面PBC.
設(shè)PD=1,時(shí),平面PAB⊥平面PBC,則DC=1,BC=PC,AD=x.
過(guò)AAG⊥PB于G點(diǎn),∵平面PAB⊥平面PBC,∴AG⊥面PBC,又∵DE⊥面PBC(已證),∴AG∥DE,而AD∥BC,∴AD∥面PBC,故AD∥GE,進(jìn)而有GE∥BC,又E為PC中點(diǎn),∴G為PB中點(diǎn),故GE=.
即 .
∴當(dāng)平面PAB⊥平面PBC時(shí),
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在三棱錐P—ABC中,PA⊥底面ABC,

(1)證明:平面PBE⊥平面PAC;
(2)如何在BC上找一點(diǎn)F,使AD∥平面PEF?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,,三點(diǎn)都是平面與平面的公共點(diǎn),并且是兩個(gè)不同的平面,試判斷,三點(diǎn)的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

把一個(gè)長(zhǎng)方體切割成個(gè)四面體,則的最小值是       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)如圖,已知平面平行于三棱錐的底面,等邊三角形所在平面與面垂直,且,設(shè)。
(Ⅰ)證明:為異面直線的公垂線;
(Ⅱ)求點(diǎn)與平面的距離;
(Ⅲ)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)如圖(2):PA⊥面ABCD,CD2AB,
∠DAB=90°,E為PC的中點(diǎn).
(1)證明:BE//面PAD;
(2)若PA=AD,證明:BE⊥面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)在二面角的棱上,點(diǎn)內(nèi),且.若對(duì)于內(nèi)異于
的任意一點(diǎn),都有,則二面角的大小是                

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)如圖所示,已知三棱柱ABC-的底面邊長(zhǎng)均為2,側(cè)棱的長(zhǎng)為2且與底面ABC所成角為,且側(cè)面垂直于底面ABC.
(1)求二面角的正切值的大小;
  (2)若其余條件不變,只改變側(cè)棱的長(zhǎng)度,當(dāng)側(cè)棱的長(zhǎng)度為多長(zhǎng)時(shí),可使面 和底面垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是一個(gè)煙筒的直觀圖(圖中單位:cm),它的下部是一個(gè)四棱臺(tái)(上、下底面均是正方形,側(cè)面是全等的等腰梯形)形物體;上部是一個(gè)四棱柱(底面與四棱臺(tái)的上底面重合,側(cè)面是全等的矩形)形物體.為防止雨水的侵蝕,增加美觀,需要粘貼瓷磚,需要瓷磚多少平方厘米(結(jié)果精確到cm)?
 

查看答案和解析>>

同步練習(xí)冊(cè)答案