7.已知全集U=R,集合A={x|y=$\sqrt{1-{x}^{2}}$},B={x|x2-2x<0},則A∪(∁UB)=( 。
A.[-1,0]B.[1,2]C.[0,1]D.(-∞,1]∪[2,+∞)

分析 求出關(guān)于A、B的范圍,得到B的補(bǔ)集,從而求出A∪(∁UB)即可.

解答 解:∵A={x|y=$\sqrt{1-{x}^{2}}$}=[-1,1],
B={x|x2-2x<0}=(0,2),
∴∁UB=(-∞,0]∪[2,+∞),
∴A∪(∁UB)=(-∞,1]∪[2,+∞),
故選:D.

點(diǎn)評(píng) 本題考查了不等式的解法,考查集合的運(yùn)算,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合A={x|x-a<0},B={x|x2-2x-3<0},若B⊆A,則實(shí)數(shù)a的取值范圍是a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合P={x|x-2≤0},Q={x|x2+9x≥0},則P∩Q=(  )
A.(-∞,-9]B.[0,2]C.(-∞,-9]∪[0,2]D.[-9,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)橢圓的中心為原點(diǎn) O,焦點(diǎn)在x軸上,上頂點(diǎn)為 A(0,2),離心率為$\frac{2}{5}\sqrt{5}$.
(I)求該橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè) B1(-2,0),B2(2,0),過(guò) B1作直線l交橢圓于 P,Q兩點(diǎn),使PB2⊥QB2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.語(yǔ)文成績(jī)服從正態(tài)分布N(100,17.52),數(shù)學(xué)成績(jī)的頻率分布直方圖如圖,如果成績(jī)大于135的則認(rèn)為特別優(yōu)秀.
(1)這500名學(xué)生中本次考試語(yǔ)文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?
(2)如果語(yǔ)文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,
從(1)中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有x人,求x的分布列和數(shù)學(xué)期望.(附公式及表)
若x~N(μ,σ2),則P(μ-σ<x≤μ+σ)=0.68,P(μ-2σ<x≤μ+2σ)=0.96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù) f (x)=xa的圖象過(guò)點(diǎn) (4,2),令an=$\frac{1}{f(n+1)+f(n)}$,n∈N*,記數(shù)列{an}的前n項(xiàng)和為Sn,則S99=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=|x-1|+|x+3|的最小值為m.
(Ⅰ)求m的值;
(Ⅱ)若正實(shí)數(shù)a,b,c滿(mǎn)足a(2a+2c+b)=m-bc,求3a+b+c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-$\frac{4}{3}$.
(1)求函數(shù)的解析式;
(2)若g(x)=f(x)-k有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案