【題目】給出以下命題:
⑴“ ”是“曲線 表示橢圓”的充要條件
⑵命題“若 ,則 ”的否命題為:“若 ,則
中, . 是斜邊 上的點, .以 為起點任作一條射線 點,則 點落在線段 上的概率是
⑷設隨機變量 服從正態(tài)分布 ,若 ,則
則正確命題有( )個
A.
B.
C.
D.

【答案】A
【解析】由題意得,(1)中,曲線表示橢圓滿足 ,解得 ,

所以是錯誤的;(2)中命題“若 ,則 ”的否命題為:“若 ,則 ”,所以是錯誤的;(3)中,在 中, . 是斜邊 上的點, .以 為起點任作一條射線 點,則 點落在線段 上的概率是 ,所以示錯誤的;(4)中根據(jù)正態(tài)分布的圖象與性質可知,隨機變量 服從正態(tài)分布 ,若 ,

,所以示錯誤的, 故答案為:A。

利用橢圓、概率、正態(tài)分布的簡單性質結合命題的真假判斷逐一分析得到結果。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知從A地到B地共有兩條路徑L1和L2 , 據(jù)統(tǒng)計,經(jīng)過兩條路徑所用的時間互不影響,且經(jīng)過L1與L2所用時間落在各時間段內(nèi)的頻率分布直方圖分別如圖(1)和圖(2).
現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于從A地到B地.
(1)為了盡最大可能在各自允許的時間內(nèi)趕到B地,甲和乙應如何選擇各自的路徑?
(2)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到B地的人數(shù),針對(1)的選擇方案,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當a=﹣3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以坐標原點 為極點, 軸的正半軸為極軸建立極坐標系,已知曲線 的極坐標方程為 .
(1)求曲線 的參數(shù)方程;
(2)在曲線 上任取一點 ,求的 最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的中心在原點,離心率為 ,右焦點到直線 的距離為2.
(1)求橢圓 的方程;
(2)橢圓下頂點為 ,直線 )與橢圓相交于不同的兩點 ,當 時,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .
(1)若曲線 處的切線方程為 ,求 的極值;
(2)若 ,是否存在 ,使 的極值大于零?若存在,求出 的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)(其中|φ|< )的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點(
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=e2x , g(x)=kx+1(k∈R). (Ⅰ)若直線y=g(x)和函數(shù)y=f(x)的圖象相切,求k的值;
(Ⅱ)當k>0時,若存在正實數(shù)m,使對任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的方程是y=8,圓C的參數(shù)方程是 (φ為參數(shù)).以O為極點,x軸的非負半軸為極軸建立極坐標系. (Ⅰ)求直線l和圓C的極坐標方程;
(Ⅱ)射線OM:θ=α(其中 )與圓C交于O、P兩點,與直線l交于點M,射線ON: 與圓C交于O、Q兩點,與直線l交于點N,求 的最大值.

查看答案和解析>>

同步練習冊答案