乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負(fù)方得0分.設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率;
(2)表示開始第4次發(fā)球時(shí)乙的得分,求的期望.

(1);(2).

解析試題分析:記表示事件:第1次和第2次這兩次發(fā)球,甲共得分,;表示事件:第3次發(fā)球,甲得1分;表示事件:開始第4次發(fā)球時(shí),甲乙的比分為1比2.(1)“開始第4次發(fā)球時(shí),甲乙的比分為1比2”包括以下兩種情況:前2次甲得0分第3次得1分和前2次甲得1分第3次得0分,即.根據(jù)互斥事件與獨(dú)立事件的概率的求法即可得其概率.(2)開始第4次發(fā)球時(shí),前面共發(fā)球3次,所以乙的得分最多為3分,即的可能取值為0,1,2,3.,都很易求出,在(1)題中已經(jīng)求得,最麻煩,可用對(duì)立事件的概率公式求得,即,然后根據(jù)期望的公式求得期望.
試題解析:記表示事件:第1次和第二次這兩次發(fā)球,甲共得分,
表示事件:第3次發(fā)球,甲得1分;
表示事件:開始第4次發(fā)球時(shí),甲乙的比分為1比2.
(1).
         3分
      ..6分
(2).
的可能取值為0,1,2,3.
.
.
.
   .10分
(或

                ..12分
考點(diǎn):1、獨(dú)立事件的概率;2、隨機(jī)變量的期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)有A、B、C、D、E五名同學(xué)在高三“一檢”中的名次依次為1,2,3,4,5名,“二檢”中的前5名依然是這五名同學(xué).
(1)求恰好有兩名同學(xué)排名不變的概率;
(2)如果設(shè)同學(xué)排名不變的同學(xué)人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場(chǎng)為促銷設(shè)計(jì)了一個(gè)抽獎(jiǎng)模型,一定數(shù)額的消費(fèi)可以獲得一張抽獎(jiǎng)券,每張抽獎(jiǎng)券可以從一個(gè)裝有大小相同的4個(gè)白球和2個(gè)紅球的口袋中一次性摸出3個(gè)球,至少摸到一個(gè)紅球則中獎(jiǎng).
(1)求一次抽獎(jiǎng)中獎(jiǎng)的概率;
(2)若每次中獎(jiǎng)可獲得10元的獎(jiǎng)金,一位顧客獲得兩張抽獎(jiǎng)券,求兩次抽獎(jiǎng)所得的獎(jiǎng)金額之和X(元)的概率分布.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用ξ表示取球終止所需要的取球次數(shù).
(1)求袋中原有白球的個(gè)數(shù);
(2)求隨機(jī)變量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

有驅(qū)蟲藥1618和1573各3杯,從中隨機(jī)取出3杯稱為一次試驗(yàn)(假定每杯被取到的概率相等),將1618全部取出稱為試驗(yàn)成功.
(1)求恰好在第3次試驗(yàn)成功的概率(要求將結(jié)果化為最簡(jiǎn)分?jǐn)?shù)).
(2)若試驗(yàn)成功的期望值是2,需要進(jìn)行多少次相互獨(dú)立重復(fù)試驗(yàn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,A地到火車站共有兩條路徑L1和L2,據(jù)統(tǒng)計(jì),通過兩條路徑所用的時(shí)間互不影響,所用時(shí)間落在各時(shí)間段內(nèi)的頻率如下表:

時(shí)間(分鐘)
10~20
20~30
30~40
40~50
50~60
L1的頻率
0.1
0.2
0.3
0.2
0.2
L2的頻率
0
0.1
0.4
0.4
0.1
現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時(shí)間用于趕往火車站.
(1)為了盡最大可能在各自允許的時(shí)間內(nèi)趕到火車站,甲和乙應(yīng)如何選擇各自的路徑?
(2)用X表示甲、乙兩人中在允許的時(shí)間內(nèi)能趕到火車站的人數(shù),針地(1)的選擇方案,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解心肺疾病是否與年齡相關(guān),現(xiàn)隨機(jī)抽取了40名市民,得到數(shù)據(jù)如下表:

 
患心肺疾病
不患心肺疾病
合計(jì)
大于40歲
16
 
 
小于等于40歲
 
12

合計(jì)
 
 
40
已知在全部的40人中隨機(jī)抽取1人,抽到不患心肺疾病的概率為
(1)請(qǐng)將列聯(lián)表補(bǔ)充完整;
(2)已知大于40歲患心肺疾病市民中,經(jīng)檢查其中有4名重癥患者,專家建議重癥患者住院治療,現(xiàn)從這16名患者中選出兩名,記需住院治療的人數(shù)為,求的分布列和數(shù)學(xué)期望;
(3)能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為患心肺疾病與年齡有關(guān)?
下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“蛟龍?zhí)枴睆暮5字袔Щ氐哪撤N生物,甲乙兩個(gè)生物小組分別獨(dú)立開展對(duì)該生物離開恒溫箱的成活情況進(jìn)行研究,每次試驗(yàn)一個(gè)生物,甲組能使生物成活的概率為,乙組能使生物成活的概率為,假定試驗(yàn)后生物成活,則稱該試驗(yàn)成功,如果生物不成活,則稱該次試驗(yàn)是失敗的.
(1)甲小組做了三次試驗(yàn),求至少兩次試驗(yàn)成功的概率;
(2)如果乙小組成功了4次才停止試驗(yàn),求乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗的概率;
(3)若甲乙兩小組各進(jìn)行2次試驗(yàn),設(shè)試驗(yàn)成功的總次數(shù)為,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

觀察下面一組組合數(shù)等式:

;
;
…………
(1)由以上規(guī)律,請(qǐng)寫出第個(gè)等式并證明;
(2)隨機(jī)變量,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案