【題目】已知 m、n 是兩條不同的直線,α、β、γ是三個不同的平面,下列命題中正確的是( )
A.若α⊥β , β⊥γ ,則α∥γ
B.若 , , m∥n ,則α∥β
C.若 m、n 是異面直線, , m∥β , , n∥α ,則α∥β
D.平面α內(nèi)有不共線的三點到平面 β的距離相等,則α∥β
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,底面是邊長為6的正三角形,底面,且與底面所成的角為.
(1)求三棱錐的體積;
(2)若是的中點,求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)打算處理一批產(chǎn)品,這些產(chǎn)品每箱100件,以箱為單位銷售.已知這批產(chǎn)品中每箱出現(xiàn)的廢品率只有或者兩種可能,兩種可能對應(yīng)的概率均為0.5.假設(shè)該產(chǎn)品正品每件市場價格為100元,廢品不值錢.現(xiàn)處理價格為每箱8400元,遇到廢品不予更換.以一箱產(chǎn)品中正品的價格期望值作為決策依據(jù).
(1)在不開箱檢驗的情況下,判斷是否可以購買;
(2)現(xiàn)允許開箱,有放回地隨機(jī)從一箱中抽取2件產(chǎn)品進(jìn)行檢驗.
①若此箱出現(xiàn)的廢品率為,記抽到的廢品數(shù)為,求的分布列和數(shù)學(xué)期望;
②若已發(fā)現(xiàn)在抽取檢驗的2件產(chǎn)品中,其中恰有一件是廢品,判斷是否可以購買.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的棱長為1,線段上有兩個動點.,且,則下列結(jié)論中錯誤的是( )
A.;
B.三棱錐體積是定值;
C.二面角的平面角大小是定值;
D.與平面所成角等于與平面所成角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,,且.
(1)的通項公式為__________;
(2)在、、、、這項中,被除余的項數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足,且,分別是定義在上的偶函數(shù)和奇函數(shù).
(1)求函數(shù)的反函數(shù);
(2)已知,若函數(shù)在上滿足,求實數(shù)a的取值范圍;
(3)若對于任意不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組在如圖所示的矩形區(qū)域內(nèi)舉行機(jī)器人攔截挑戰(zhàn)賽,在處按方向釋放機(jī)器人甲,同時在處按某方向釋放機(jī)器人乙,設(shè)機(jī)器人乙在處成功攔截機(jī)器人甲.若點在矩形區(qū)域內(nèi)(包含邊界),則挑戰(zhàn)成功,否則挑戰(zhàn)失。阎米,為中點,機(jī)器人乙的速度是機(jī)器人甲的速度的2倍,比賽中兩機(jī)器人均按勻速直線運(yùn)動方式行進(jìn),記與的夾角為.
(1)若,足夠長,則如何設(shè)置機(jī)器人乙的釋放角度才能挑戰(zhàn)成功?(結(jié)果精確到);
(2)如何設(shè)計矩形區(qū)域的寬的長度,才能確保無論的值為多少,總可以通過設(shè)置機(jī)器人乙的釋放角度使機(jī)器人乙在矩形區(qū)域內(nèi)成功攔截機(jī)器人甲?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“辛卜生公式”給出了求幾何體體積的一種計算方法:夾在兩個平行平面之間的幾何體,如果被平行于這兩個平面的任何平面所截,截得的截面面積是截面高(不超過三次)的多項式函數(shù),那么這個幾何體的體積,就等于其上底面積、下底面積與四倍中截面面積的和乘以高的六分之一.即:,式中,,,依次為幾何體的高,下底面積,上底面積,中截面面積.如圖,現(xiàn)將曲線與直線及軸圍成的封閉圖形繞軸旋轉(zhuǎn)一周得到一個幾何體.利用辛卜生公式可求得該幾何體的體積( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正整數(shù)數(shù)列滿足(p,q為常數(shù)),其中為數(shù)列的前n項和.
(1)若,,求證:是等差數(shù)列;
(2)若數(shù)列為等差數(shù)列,求p的值;
(3)證明:的充要條件是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com