18.設(shè)函數(shù)f(x)=lg(x+1)的定義域?yàn)榧螦,g(x)=$\sqrt{2x+m-{x}^{2}}$的定義域?yàn)榧螧.
(1)當(dāng)m=3時(shí),求A∩(∁RB);
(2)若A∩B={x|-1<x≤4},求實(shí)數(shù)m的值.

分析 (1)分別求出f(x)與g(x)的定義域確定出A與B,求出A與B補(bǔ)集的交集即可;
(2)表示出g(x)的定義域,根據(jù)A與B的交集,確定出m的值即可.

解答 解:(1)由函數(shù)f(x)=lg(x+1),得到x+1>0,
解得:x>-1,即A=(-1,+∞);
由函數(shù)g(x)=$\sqrt{2x+m-{x}^{2}}$及m=3,得到-x2+2x+3≥0,
整理得:x2-2x-3≤0,即(x-3)(x+1)≤0,
解得:-1≤x≤3,即B=[-1,3],
∴∁RB=(-∞,-1)∪(3,+∞),
則A∩(∁RB)=(3,+∞);
(2)由B中函數(shù)得:-x2+2x+m≥0,即x2-2x-m≤0,
∵A=(-1,+∞),A∩B=(-1,4],
∴x=4是方程x2-2x-m=0的解,
把x=4代入方程得:16-8-m=0,
解得:m=8.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的最小值是-1,最小正周期為2π,其圖象經(jīng)過(guò)點(diǎn)M($\frac{π}{3}$,$\frac{1}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)已知f(α+β)=-$\frac{3}{5}$,f(α-β)=$\frac{4}{5}$,求tanαtanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知中心在坐標(biāo)原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別是F1、F2,這兩條曲線在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形,若|PF1|=8,橢圓與雙曲線的離心率分別為e1,e2,則$\frac{1}{{e}_{1}}$+$\frac{1}{{e}_{2}}$的取值范圍是(  )
A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知?jiǎng)狱c(diǎn)M與兩點(diǎn)P1($\frac{r}{2}$,0),P2(2r,0)的距離之比為$\frac{1}{2}$,r>0.
(1)求動(dòng)點(diǎn)M的軌跡Γ的方程;
(2)已知菱形ABCD的一個(gè)內(nèi)角為60°,頂點(diǎn)A,B在直線l:y=2x+3上,頂點(diǎn)C,D在Γ上,當(dāng)直線l與Γ無(wú)公共點(diǎn)時(shí),求菱形ABCD的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知f′(x)是函數(shù)f(x)在R上的導(dǎo)函數(shù),函數(shù)f(x)在x=-2處取得極小值,則函數(shù)y=xf′(x)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,內(nèi)角A,B,C所對(duì)邊分別為a,b,c,且a=3b,sinB=$\frac{1}{4}$,則sinA等于( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{9}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若2cos(θ-$\frac{π}{3}$)=3cosθ,則tan2θ=-4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,∠BAC=45°,∠ABC=60°,O為三角形的外心,以線段OB,OC為鄰邊作平行四邊形,第四個(gè)頂點(diǎn)為D,再以O(shè)A,OD為鄰邊作平行四邊形,它的第四個(gè)頂點(diǎn)為H.
(1)設(shè)向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,試用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{OH}$;
(2)用向量法證明:AH⊥BC;
(3)若△ABC的外接圓半徑為$\sqrt{2}$,求OH的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖程序框圖運(yùn)行后,如果輸出的函數(shù)值在區(qū)間[-2,$\frac{1}{2}$]內(nèi),則輸入的實(shí)數(shù)x的取值范圍是(-∞,-1]∪[$\frac{1}{4}$,$\sqrt{2}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案