如圖,在棱長(zhǎng)為1的正方體中,E是棱A1B1的中點(diǎn),
(1)求證:AE⊥BC;
(2)求CE與平面AA1B1B所成角大小(用反三角函數(shù)表示).
分析:(1)要證線線垂直,先證線面垂直,正方體中BC⊥平面AA1B1B,而AE?平面AA1B1B,故AE⊥BC
(2)要求斜線與平面所成的角,需先找斜線在平面內(nèi)的射影,因?yàn)锽C⊥平面AA1B1B,故,∠CEB為CE與平面AA1B1B所成的角,再在三角形CEB中求角的正切值即可
解答:解:(1)∵正方體中BC⊥平面AA1B1B,AE?平面AA1B1B,∴AE⊥BC
(2)連接EB,∠CEB為CE與平面AA1B1B所成的角,
∵BC=1,BE=
5
2
,∴tan∠CEB=
2
5
5

即CE與平面AA1B1B所成角大小為arctan
2
5
5
點(diǎn)評(píng):本題考查了空間線線垂直的證明方法,空間線面角的作法和求法,解題時(shí)要善于將空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題解決
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過(guò)角的正弦
值.
(2)在上述旋轉(zhuǎn)過(guò)程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問(wèn)在線段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江蘇省南京市金陵中學(xué)高三(上)8月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省合肥八中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過(guò)角的正弦
值.
(2)在上述旋轉(zhuǎn)過(guò)程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問(wèn)在線段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案