已知x,y滿足
x-y+1≥0
x+y-2≥0
x≤2
,則目標函數(shù)z=x-3y的最小值是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=x-3y得y=
1
3
x-
z
3

平移直線y=
1
3
x-
z
3
,由圖象可知當直線y=
1
3
x-
z
3
經(jīng)過點A時,
直線y=
1
3
x-
z
3
的截距最大,此時z最小,
x=2
x-y+1=0
,解得
x=2
y=3
,
即A(2,3),
此時z=2-3×3=-7,
故答案為:-7
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

程序框圖如圖所示,輸出S的值是( 。
A、7B、11C、12D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
x2+2x+2
x+1
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
1
2
,右焦點為F,右頂點A在圓F:(x-1)2+y22(γ>0)上.
(Ⅰ)求橢圓C和圓F的方程;
(Ⅱ)已知過點A的直線l與橢圓C交于另一點B,與圓F交于另一點P.請判斷是否存在斜率不為0的直線l,使點P恰好為線段AB的中點,若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域:
(1)y=
1-2x
1+3x

(2)y=
1-2
x
1+3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方形區(qū)域{(x,y)|0≤x≤2,0≤y≤1}中任取一點P,則點P恰好取自曲線y=cosx(0≤x≤
π
2
)
與坐標軸圍成的區(qū)域內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2-bx+2(x∈(-∞,1))是單調(diào)函數(shù),則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x,y滿足不等式組
x+y≥2
x-y≤2
0≤y≤3
,則z=x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當a,b∈R時,下列四個命題:
①若a>b,則a2>b2;
②若|a|>b,則a2>b2;
③若a>|b|,則a2>b2
④若a≠|(zhì)b|,則a2≠b2
其中正確的個數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案