A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{14}}{4}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),由拋物線E:y2=16x,可得焦點F(4,0),可得a.又2×$\frac{^{2}}{a}$=2,a2=b2+c2,聯(lián)立解出即可得出.
解答 解:由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
由拋物線E:y2=16x,可得焦點F(4,0),則a=4.
又2×$\frac{^{2}}{a}$=2,a2=b2+c2,
聯(lián)立解得:b=2,c=$2\sqrt{3}$.
∴e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$.
故選:D.
點評 本題考查了橢圓與拋物線的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,2] | C. | (0,2] | D. | [$\frac{1}{2}$,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2017 | B. | -8 | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 100 | B. | 50 | C. | $\frac{99}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-2x+1 | B. | y=$\frac{1}{x}$ | C. | y=lgx | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com