A. | (x+2)2+(y+1)2=5 | B. | (x+4)2+(y+2)2=20 | C. | (x-2)2+(y-1)2=5 | D. | (x-4)2+(y-2)2=20 |
分析 由題意知OA⊥PA,BO⊥PB,四邊形AOBP的四個(gè)頂點(diǎn)在同一個(gè)圓上,此圓的直徑是OP,△AOB外接圓就是四邊形AOBP的外接圓.
解答 解:由題意知,OA⊥PA,BO⊥PB,
∴四邊形AOBP有一組對(duì)角都等于90°,
∴四邊形AOBP的四個(gè)頂點(diǎn)在同一個(gè)圓上,此圓的直徑是OP,OP的中點(diǎn)為(2,1),
OP=2$\sqrt{5}$,
∴四邊形AOBP的外接圓的方程為 (x-2)2+(y-1)2=5,
∴△AOB外接圓的方程為 (x-2)2+(y-1)2=5.
故選:C.
點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程的求法,把求△AOB外接圓方程轉(zhuǎn)化為求四邊形AOBP的外接圓方程,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{3\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $?x≤0{,_{\;}}{2^x}≥3$ | B. | $?x≤0{,_{\;}}{2^x}<3$ | C. | $?x>0{,_{\;}}{2^x}≤3$ | D. | $?x>0{,_{\;}}{2^x}<3$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 100 | B. | 120 | C. | 390 | D. | 540 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com