.設(shè)函數(shù)且。
(Ⅰ)求的解析式及定義域。(Ⅱ)求的值域。
解:(Ⅰ) 所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ce/c/un8wm.gif" style="vertical-align:middle;" />解得
所以函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/96/b/18lb03.gif" style="vertical-align:middle;" />!ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ5分
(Ⅱ)
所以函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1c/8/1gxj44.gif" style="vertical-align:middle;" />····························10分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知是定義在上的奇函數(shù),且,若時(shí),有.
(1)解不等式;
(2)若對(duì)所有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像與軸的交點(diǎn)至少有一個(gè)在原點(diǎn)的右側(cè),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)設(shè)是定義在[-1,1]上的偶函數(shù),的圖象與的圖象關(guān)于直線對(duì)稱,且當(dāng)x∈[ 2,3 ] 時(shí), 222233.
(1)求的解析式;
(2)若在上為增函數(shù),求的取值范圍;
(3)是否存在正整數(shù),使的圖象的最高點(diǎn)落在直線上?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)不同的交點(diǎn). 經(jīng)過這三個(gè)交點(diǎn)的圓記為.
(I)求實(shí)數(shù)的取值范圍;
(II)求圓的一般方程;
(III)圓是否經(jīng)過某個(gè)定點(diǎn)(其坐標(biāo)與無關(guān))?若存在,請(qǐng)求出點(diǎn)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
用總長(zhǎng)14.8m的鋼條做一個(gè)長(zhǎng)方體容器的框架,如果所做容器的底面的一邊長(zhǎng)比另一邊長(zhǎng)多0.5m,那么高是多少時(shí)容器的容積最大?并求出它的最大容積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在邊長(zhǎng)為4的正方形ABCD上有一點(diǎn)P,沿著折線BCDA由B點(diǎn)(起點(diǎn))向A點(diǎn)(終點(diǎn))移動(dòng),設(shè)P點(diǎn)移動(dòng)的路程為x,△ABP的面積為y=f(x).
(1)求△ABP的面積與P移動(dòng)的路程間的函數(shù)關(guān)系式;
(2)作出函數(shù)的圖象,并根據(jù)圖象求y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是從A到B的映射.
(1)若B中每一元素都有原象,這樣不同的f有多少個(gè)?
(2)若B中的元素0必?zé)o原象,這樣的f有多少個(gè)?
(3)若f滿足f(a1)+f(a2)+f(a3)+f(a4)=4,這樣的f又有多少個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com