【題目】已知拋物線的焦點曲線的一個焦點, 為坐標原點,點為拋物線上任意一點,過點作軸的平行線交拋物線的準線于,直線交拋物線于點.
(Ⅰ)求拋物線的方程;
(Ⅱ)求證:直線過定點,并求出此定點的坐標.
【答案】(I);(II)證明見解析.
【解析】試題分析:(Ⅰ)將曲線化為標準方程,可求得的焦點坐標分別為,可得,所以,即拋物線的方程為;(Ⅱ)結(jié)合(Ⅰ),可設(shè),得,從而直線的方程為,聯(lián)立直線與拋物線方程得,解得,直線的方程為,整理得的方程為,此時直線恒過定點.
試題解析:(Ⅰ)由曲線,化為標準方程可得, 所以曲線是焦點在軸上的雙曲線,其中,故, 的焦點坐標分別為,因為拋物線的焦點坐標為,由題意知,所以,即拋物線的方程為.
(Ⅱ)由(Ⅰ)知拋物線的準線方程為,設(shè),顯然.故,從而直線的方程為,聯(lián)立直線與拋物線方程得,解得
①當,即時,直線的方程為,
②當,即時,直線的方程為,整理得的方程為,此時直線恒過定點, 也在直線的方程為上,故直線的方程恒過定點.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù),
(Ⅰ)當時,求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)若時,關(guān)于的不等式恒成立,求實數(shù)的取值范圍;
(Ⅲ)若數(shù)列滿足, ,記的前項和為,求證: .
【答案】(I);(II);(III)證明見解析.
【解析】試題分析:(Ⅰ)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)當時,因為,所以顯然不成立,先證明因此時, 在上恒成立,再證明當時不滿足題意,從而可得結(jié)果;(III)先求出等差數(shù)列的前項和為,結(jié)合(II)可得,各式相加即可得結(jié)論.
試題解析:(Ⅰ)由,得.所以
令,解得或(舍去),所以函數(shù)的單調(diào)遞減區(qū)間為 .
(Ⅱ)由得,
當時,因為,所以顯然不成立,因此.
令,則,令,得.
當時, , ,∴,所以,即有.
因此時, 在上恒成立.
②當時, , 在上為減函數(shù),在上為增函數(shù),
∴,不滿足題意.
綜上,不等式在上恒成立時,實數(shù)的取值范圍是.
(III)證明:由知數(shù)列是的等差數(shù)列,所以
所以
由(Ⅱ)得, 在上恒成立.
所以. 將以上各式左右兩邊分別相加,得
.因為
所以
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, 在上,且面.
(1)求證: 是的中點;
(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率為。
(1)記甲擊中目標的次數(shù)為,求的概率分布及數(shù)學(xué)期望;
(2)求乙至多擊目標2次的概率;
(3)求甲恰好比乙多擊中目標2次的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
若曲線在點處的切線平行于軸,求函數(shù)的單調(diào)區(qū)間;
若時,總有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某學(xué)校高三年級800名學(xué)生中隨機抽取50名測量身高,據(jù)測量被抽取的學(xué)生的身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160);第二組[160,165);…第八組[190,195],圖是按上述分組方法得到的條形圖.
(1)根據(jù)已知條件填寫將表格填寫完整;
組別 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
樣本 | 2 | 4 | 10 | 10 | 15 | 4 |
(2)估計這所學(xué)校高三年級800名學(xué)生中身高在180cm以上(含180cm)的人數(shù);
(3)在樣本中,若第二組有1人為男生,其余為女生,第七組有1人為女生,其余為男生,在第二組和第七組中各選一名同學(xué)組成實驗小組,問:實驗小組中恰為一男一女的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月22日.在平昌冬奧會短道速滑男子500米比賽中.中國選手武大靖以連續(xù)打破世界紀錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造中國男子冰上競速項目在冬奧會金牌零的突破.某高校為調(diào)查該校學(xué)生在冬奧會期間累計觀看冬奧會的時間情況.收集了200位男生、100位女生累計觀看冬奧會時間的樣本數(shù)據(jù)(單位:小時).又在100位女生中隨機抽取20個人.已知這20位女生的數(shù)據(jù)莖葉圖如圖所示.
(1)將這20位女生的時間數(shù)據(jù)分成8組,分組區(qū)間分別為,在答題卡上完成頻率分布直方圖;
(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會時間不少于30小時的概率;
(3)以(1)中的頻率估計100位女生中累計觀看時間小于20個小時的人數(shù).已知200位男生中累計觀看時間小于20小時的男生有50人請完成答題卡中的列聯(lián)表,并判斷是否有99 %的把握認為“該校學(xué)生觀看冬奧會累計時間與性別有關(guān)”.
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈。假設(shè)1千克該蔬菜用清水千克清洗后,蔬菜上殘留的農(nóng)藥為微克,通過樣本數(shù)據(jù)得到關(guān)于的散點圖。由數(shù)據(jù)分析可用函數(shù)擬合與的關(guān)系.
(1)求與的回歸方程(精確到0.1);
(2)已知對于殘留在蔬菜上的農(nóng)藥,當它的殘留量不超過20微克時對人體無害。為了放心食用該蔬菜,請估計至少需要用多少克的清水清洗1千克蔬菜?(答案精確到0.1)
附:①參考數(shù)據(jù):,,(其中),。
②參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2011年至2017年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
(I)求關(guān)于的線性回歸方程;
(II)利用(I)中所求的線性回歸方程,分析該地區(qū)2011年至2017年農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2018年農(nóng)村居民家庭人均純收入.
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為“中學(xué)數(shù)學(xué)聯(lián)賽”選拔人才,分初賽和復(fù)賽兩個階段進行,規(guī)定:分數(shù)不小于本次考試成績中位數(shù)的具有復(fù)賽資格,某校有900名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.
(1)求獲得復(fù)賽資格應(yīng)劃定的最低分數(shù)線;
(2)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間與各抽取多少人?
(3)從(2)抽取的7人中,選出4人參加全市座談交流,設(shè)表示得分在中參加全市座談交流的人數(shù),學(xué)校打算給這4人一定的物質(zhì)獎勵,若該生分數(shù)在給予500元獎勵,若該生分數(shù)在給予800元獎勵,用Y表示學(xué)校發(fā)的獎金數(shù)額,求Y的分布列和數(shù)學(xué)期望。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com