已知函數(shù),
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值為20,求它在該區(qū)間上的最小值.
(1);(2).
解析試題分析:(1)對函數(shù)求導(dǎo),可得,由得函數(shù)的單調(diào)遞減區(qū)間; (2)由函數(shù)的單調(diào)區(qū)間可知在上單調(diào)遞增.那么和分別是在區(qū)間上的最大值和最小值,由最大值,得,代回可求得最小值.
解:(1),令, ..2分
解得或, .4分
所以函數(shù)的單調(diào)遞減區(qū)間為. .6分
(2)因為,,
所以.∵時,,∴在上單調(diào)遞增.
又在上單調(diào)遞減,
所以和分別是在區(qū)間上的最大值和最小值. ..10分
于是有,解得.故,
所以,即函數(shù)在區(qū)間上的最小值為 12分
考點:導(dǎo)數(shù)與函數(shù)的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) (R).
(1)當(dāng)時,求函數(shù)的極值;
(2)若函數(shù)的圖象與軸有且只有一個交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)().
(1)求函數(shù)的單調(diào)區(qū)間;
(2)請問,是否存在實數(shù)使上恒成立?若存在,請求實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在與處都取得極值.
(1)求,的值;
(2)設(shè)函數(shù),若對任意的,總存在,使得:,求實數(shù)的取值范圍.
查看答案和解析>>
科目:解答題
來源: 題型:已知函數(shù)()
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在處取得極值,不等式對任意恒成立,求實數(shù)的取值范圍;
(3)當(dāng)時,證明不等式 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求的單調(diào)區(qū)間和極值;
(2)若關(guān)于的方程有3個不同實根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)(為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時,
(3)證明:對任意給定的正數(shù),總存在,使得當(dāng)時,恒有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com