11.根據(jù)平面幾何的勾股定理,試類比出三棱錐P-ABC(PA、PB、PC兩兩垂直)中相應的結(jié)論是:S2△ABC=S2△PBC+S2△APC+S2△ABP

分析 斜邊的平方等于兩個直角邊的平方和,可類比到空間就是斜面面積的平方等于三個直角面的面積的平方和,邊對應著面.

解答 解:由邊對應著面,邊長對應著面積,由類比可得S2△ABC=S2△PBC+S2△APC+S2△ABP
故答案為:S2△ABC=S2△PBC+S2△APC+S2△ABP

點評 本題考查了從平面類比到空間,屬于基本類比推理.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知f(x)=log0.2(x2+2x-3).
(1)求f(x)的定義域;
(2)若f(x)≥log0.2(x2-4),求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(1)已知0<x1<x2,求證:$\frac{{x}_{1}+1}{{x}_{2}+1}>\frac{{x}_{1}}{{x}_{2}}$;
(2)已知f(x)=lg(x+1)-$\frac{1}{2}$log3x,求證:f(x)在定義域內(nèi)是單調(diào)遞減函數(shù);
(3)在(2)的條件下,求集合M={n|f(n2-214n-1998)≥0,n∈Z}的子集個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(3,0),$\overrightarrow$=(-5,5),$\overrightarrow{c}$=(2,k)
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角;
(2)若$\overrightarrow$∥$\overrightarrow{c}$,求k的值;
(3)若$\overrightarrow$⊥($\overrightarrow{a}+\overrightarrow{c}$),求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知直線l1:y=k(x+1)-1(k∈R)
(Ⅰ)證明:直線l1過定點;
(Ⅱ)若直線l1與直線l2:3x-(k-2)y+2=0平行,求k的值并求此時兩直線間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.運行如圖的程序,如果輸入的m,n的值分別是24和15,記錄輸出的i和m的值.在平面直角坐標系xOy中,已知點A(i-4,m),圓C的圓心在直線l:y=2x-4上.
(1)若圓C的半徑為1,且圓心C在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使∠OMA=90°,求圓C的半徑r的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知tanα=2,求:
(1)$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{tan(-α-π)sin(-π-α)}$;
(2)2sin2α-3sinαcosα-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若點P(sinα,tanα)在第三象限,則角α是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知:a,b,c∈(-∞,0),求證:a+$\frac{1}$,b+$\frac{1}{c}$,c+$\frac{1}{a}$中至少有一個不大于-2.

查看答案和解析>>

同步練習冊答案