【題目】下列說法中,正確的是:( )

A. 命題“若,則”的否命題為“若,則

B. 命題“存在,使得”的否定是:“任意,都有

C. 若命題“非”與命題“”都是真命題,那么命題一定是真命題

D. 命題“若,則”的逆命題是真命題

【答案】C

【解析】對于A,命題a>b,則2a>2b-1”的否命題為a≤b,則2a≤2b-1”;A不正確;
對于B,命題存在xR,使得x2+x+1<0”的否定是:任意xR,都有x2+x+1≥0”;B不正確;
對于C,若命題p”是真命題則P是假命題,命題“pq”是真命題,那么命題q一定是真命題,∴C正確;
對于D,命題a2+b2=0,則ab=0”的逆命題是ab=0a2+b2=0,顯然不正確,∴D不正確;
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x﹣2<0},B={x|﹣1<x<1},求:
(1)A∩B并說明集合A和集合B的關(guān)系,
(2)AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x+cos2x.
(1)當x∈[0, ]時,求f(x)的取值范圍;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)討論的單調(diào)性;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的一個焦點與拋物線y2=8x的焦點重合,點 在C上.
(1)求橢圓C的方程;
(2)若橢圓C的一條弦被M(2,1)點平分,求這條弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位生產(chǎn)A、B兩種產(chǎn)品,需要資金和場地,生產(chǎn)每噸A種產(chǎn)品和生產(chǎn)每噸B種產(chǎn)品所需資金和場地的數(shù)據(jù)如表所示:

資源
產(chǎn)品

資金(萬元)

場地(平方米)

A

2

100

B

35

50

現(xiàn)有資金12萬元,場地400平方米,生產(chǎn)每噸A種產(chǎn)品可獲利潤3萬元;生產(chǎn)每噸B種產(chǎn)品可獲利潤2萬元,分別用x,y表示計劃生產(chǎn)A、B兩種產(chǎn)品的噸數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問A、B兩種產(chǎn)品應(yīng)各生產(chǎn)多少噸,才能產(chǎn)生最大的利潤?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐A-BCD,△ABC是等腰直角三角形,ACBC,BC=2,AD平面BCD,AD=1.

(1)求證:平面ABC平面ACD;

(2)EAB中點,求點A到平面CED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,若2asinB= b. (Ⅰ)求A;
(Ⅱ)若a= ,△ABC的面積為 ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)= 若f(x)=x+a有且僅有三個解,則實數(shù)a的取值范圍是(
A.[1,2]
B.(﹣∞,2)
C.[1,+∞)
D.(﹣∞,1)

查看答案和解析>>

同步練習(xí)冊答案