如圖,已知拋物線y2=2px(p>0)的焦點(diǎn)F恰好是雙曲線數(shù)學(xué)公式=1(a>0,b>0)的右焦點(diǎn),且兩條曲線交點(diǎn)的連線過(guò)點(diǎn)F,則該雙曲線的離心率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    2
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:先根據(jù)拋物線方程及兩條曲線交點(diǎn)的連線過(guò)點(diǎn)F得到交點(diǎn)坐標(biāo),代入雙曲線,把=c代入整理得 c4-6a2c2+a4=0等式兩邊同除以a4,得到關(guān)于離心率e的方程,進(jìn)而可求得e
解答:由題意,∵兩條曲線交點(diǎn)的連線過(guò)點(diǎn)F
∴兩條曲線交點(diǎn)為(,p),
代入雙曲線方程得-=1,
=c
-4×=1,化簡(jiǎn)得 c4-6a2c2+a4=0
∴e4-6e2+1=0
∴e2=3+2=(1+2
∴e=+1
故選C.
點(diǎn)評(píng):本題的考點(diǎn)是拋物線的簡(jiǎn)單性質(zhì),主要考查拋物線的應(yīng)用,考查雙曲線的離心率,解題的關(guān)鍵是得出a,c的方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線y2=2px(p>0)的焦點(diǎn)恰好是橢圓
x2
a2
+
y2
b2
=1
的右焦點(diǎn)F,且兩條曲線的交點(diǎn)的連線過(guò)F,則該橢圓的離心率為( 。
A、
2
-1
B、2(
2
-1)
C、
5
-1
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線y2=2px(p>0),焦點(diǎn)為F,準(zhǔn)線為直線l,P為拋物線上的一點(diǎn),過(guò)點(diǎn)P作l的垂線,垂足為點(diǎn)Q.當(dāng)P的橫坐標(biāo)為3時(shí),△PQF為等邊三角形.
(1)求拋物線的方程;
(2)過(guò)點(diǎn)F的直線交拋物線于A,B兩點(diǎn),交直線l于點(diǎn)M,交y軸于G.
①若
MA
=λ1
AF
,
MB
=λ2
BF
,求證:λ12為常數(shù);
②求
GA
GB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線焦點(diǎn)垂直于對(duì)稱軸的弦叫做拋物線的通徑.如圖,已知拋物線y2=2px(p>0),過(guò)其焦點(diǎn)F的直線交拋物線于A(x1,y1)、B(x2,y2)兩點(diǎn),過(guò)A、B作準(zhǔn)線的垂線,垂足分別為A1、B1
(1)求出拋物線的通徑,證明x1x2和y1y2都是定值,并求出這個(gè)定值;
(2)證明:A1F⊥B1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西城區(qū)一模)如圖,已知拋物線y2=x及兩點(diǎn)A1(0,y1)和A2(0,y2),其中y1>y2>0.過(guò)A1,A2分別作y軸的垂線,交拋物線于B1,B2兩點(diǎn),直線B1B2與y軸交于點(diǎn)A3(0,y3),此時(shí)就稱A1,A2確定了A3.依此類推,可由A2,A3確定A4,….記An(0,yn),n=1,2,3,….
給出下列三個(gè)結(jié)論:
①數(shù)列{yn}是遞減數(shù)列;
②對(duì)?n∈N*,yn>0;
③若y1=4,y2=3,則y5=
23

其中,所有正確結(jié)論的序號(hào)是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y2=2px(p>0),過(guò)它的焦點(diǎn)F的直線l與其相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)若拋物線過(guò)點(diǎn)(1,2),求它的方程;
(Ⅱ)在(1)的條件下,若直線l的斜率為l,求AB弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案