【題目】根據(jù)閱兵領(lǐng)導(dǎo)小組辦公室介紹,2019年國慶70周年閱兵有59個方(梯)隊和聯(lián)合軍樂團(tuán),總規(guī)模約1.5萬人,是近幾次閱兵中規(guī)模最大的一次.其中,徒步方隊15個.為了保證閱兵式時隊列保持整齊,各個方隊對受閱隊員的身高也有著非常嚴(yán)格的限制,太高或太矮都不行.徒步方隊隊員,男性身高普遍在175cm至185cm之間;女性身高普遍在163cm至175cm之間,這是常規(guī)標(biāo)準(zhǔn).要求最為嚴(yán)格的三軍儀仗隊,其隊員的身高一般都在184cm至190cm之間.經(jīng)過隨機(jī)調(diào)查某個閱兵陣營中女子100人,得到她們身高的直方圖,如圖,記C為事件:“某一閱兵女子身高不低于169cm”,根據(jù)直方圖得到P(C)的估計值為0.5.
(1)求直方圖中a,b的值;
(2)估計這個陣營女子身高的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若,解不等式;
(2)若當(dāng)時,關(guān)于的不等式恒成立,求的取值范圍;
(3)設(shè),若存在使不等式成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了慶祝中華人民共和國成立70周年,某公司舉行大型抽獎活動,活動中準(zhǔn)備了一枚質(zhì)地均勻的正十二面體的骰子,在其十二個面上分別標(biāo)有數(shù)字1,2,3,…,12,每位員工均有一次參與機(jī)會,并規(guī)定:若第一次拋得向上面的點數(shù)為完全平方數(shù)(即能寫成整數(shù)的平方形式,如),則立即視為獲得大獎;若第一次拋得向上面的點數(shù)不是完全平方數(shù),則需進(jìn)行第二次拋擲,兩次拋得的點數(shù)和為完全平方數(shù)(如),也可視為獲得大獎.否則,只能獲得安慰獎.
(1)試列舉須拋擲兩次才能獲得大獎的所有可能情況(用表示前后兩次拋得的點數(shù)),并說明所有可能情況的總數(shù);
(2)若獲得大獎的獎金(單位:元)為拋得的點數(shù)或點數(shù)和(完全平方數(shù))的360倍,而安慰獎的獎金為48元,該公司某位員工獲得的獎金為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我們的教材必修一中有這樣一個問題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:
方案一:每天回報元;
方案二:第一天回報元,以后每天比前一天多回報元;
方案三:第一天回報元,以后每天的回報比前一天翻一番.
記三種方案第天的回報分別為,,.
(1)根據(jù)數(shù)列的定義判斷數(shù)列,,的類型,并據(jù)此寫出三個數(shù)列的通項公式;
(2)小王準(zhǔn)備做一個為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有下列四個結(jié)論,其中所有正確結(jié)論的編號是___________.
①若,則的最大值為;
②若,,是等差數(shù)列的前項,則;
③“”的一個必要不充分條件是“”;
④“,”的否定為“,”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求當(dāng)在處的切線的斜率最小時,的解析式;
(2)在(1)的條件下,是否總存在實數(shù)m,使得對任意的,總存在,使得成立?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com