20.若一扇形的圓心角為3弧度,且此扇形周長(zhǎng)為5,則此扇形的面積S=$\frac{3}{2}$.

分析 設(shè)出扇形的半徑,求出扇形的弧長(zhǎng),利用周長(zhǎng)公式,求出半徑,然后求出扇形的面積.

解答 解:設(shè)扇形的半徑為:R,所以,2R+3R=5,所以R=1,
扇形的弧長(zhǎng)為:3,半徑為1,
扇形的面積為:S=$\frac{1}{2}$×3×1=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點(diǎn)評(píng) 本題主要考查了扇形的面積公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求證:f(x)≥x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將正奇數(shù)排成如圖所示的三角形數(shù)陣(第k行有k個(gè)奇數(shù)),其中第i行第j個(gè)數(shù)表示為aij,例如a42=15,若aij=2015,則i-j=( 。
A.26B.27C.28D.29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$f(x)=\left\{{\begin{array}{l}{\sqrt{4-{x^2}},1<x≤2}\\{2f({\frac{x}{2}}),x>2}\end{array}}\right.$,若函數(shù)y=f(x)-ax在(1,+∞)上無(wú)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.$({-∞,-\sqrt{3}}]∪({\sqrt{3},+∞})$B.$({-∞,-\sqrt{3}})∪[{\sqrt{3},+∞})$C.$({-∞,0}]∪({\sqrt{3},+∞})$D.$({-∞,0})∪[{\sqrt{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一種計(jì)算裝置,有一數(shù)據(jù)入口A和一個(gè)運(yùn)算出口B,按照某種運(yùn)算程序:
①當(dāng)從A口輸入自然數(shù)1時(shí),從B口得到$\frac{1}{3}$,記為$f(1)=\frac{1}{3}$;
②當(dāng)從A口輸入自然數(shù)n(n≥2)時(shí),在B口得到的結(jié)果f(n)是前一個(gè)結(jié)果f(n-1)的$\frac{{2({n-1})-1}}{{2({n-1})+3}}$倍.
(1)當(dāng)從A口分別輸入自然數(shù)2,3,4 時(shí),從B口分別得到什么數(shù)?并求f(n)的表達(dá)式;
(2)記Sn為數(shù)列{f(n)}的前n項(xiàng)的和.當(dāng)從B口得到16112195的倒數(shù)時(shí),求此時(shí)對(duì)應(yīng)的Sn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.曲線y=x3+1在點(diǎn)P(1,2)處的切線方程為( 。
A.3x-y+1=0B.3x-y-1=0C.3x+y-1=0D.3x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,a、b、c分別是角A、B、C所對(duì)的邊,a=4,A=30°,B=60°,則b等于4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若tanα=-3,則$\frac{cosα+2sinα}{2cosα-3sinα}$的值為$-\frac{5}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若△ABC的內(nèi)切圓面積為3π,三角形面積是10$\sqrt{3}$,A=60°,則BC邊的長(zhǎng)是( 。
A.5B.6C.7D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案