【題目】已知是橢圓的兩個焦點,且點在橢圓C上.

1)求橢圓C的方程;

2)直線(m>0)與橢圓C有且僅有一個公共點,且與x軸和y軸分別交于點M,N,當(dāng)△OMN面積取最小值時,求此時直線的方程.

【答案】(1)(2)

【解析】

(1)是橢圓的兩個焦點,且點在橢圓C上,求出a,b,即可得出橢圓方程;

(2)聯(lián)立直線和橢圓方程可得,由此利用根的判別式、韋達定理、弦長公式、基本不等式、橢圓性質(zhì),結(jié)合已知條件即可求出結(jié)果.

(1)∵是橢圓的兩個焦點,且點在橢圓C上,∴依題意,,又,故.由b2=3.

故所求橢圓C的方程為

(2)由,消y,

由直線l與橢圓C僅有一個公共點知,

,整理得

由條件可得,,

所以.①

代入①,得

因為,所以,

當(dāng)且僅當(dāng),則,即時等號成立,有最小值

因為,所以,又,解得

故所求直線方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】孝感車天地關(guān)于某品牌汽車的使用年限(年)和所支出的維修費用(千元)由如表的統(tǒng)計資料:

2

3

4

5

6

2.1

3.4

5.9

6.6

7.0

(1)畫出散點圖并判斷使用年限與所支出的維修費用是否線性相關(guān);如果線性相關(guān),求回歸直線方程;

(2)若使用超過8年,維修費用超過1.5萬元時,車主將處理掉該車,估計第10年年底時,車主是否會處理掉該車?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上.

(1)求橢圓的方程;

(2)若不過原點的直線與橢圓相交于兩點,與直線相交于點,且是線段的中點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生對某小區(qū)30位居民的飲食習(xí)慣進行了一次調(diào)查,并用如圖所示的莖葉圖表示他們的飲食指數(shù)(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的,飲食以肉類為主).

(1)根據(jù)莖葉圖,說明這30位居民中50歲以上的人的飲食習(xí)慣;

(2)根據(jù)以上數(shù)據(jù)完成如下2×2列聯(lián)表;

主食蔬菜

主食肉類

總計

50歲以下

50歲以上

總計

(3)能否有99%的把握認為居民的飲食習(xí)慣與年齡有關(guān)?

獨立性檢驗的臨界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的函數(shù).

(Ⅰ)若為單調(diào)函數(shù),試求實數(shù)的取值范圍;

(Ⅱ)討論的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,若acos2ccos2b,那么a,b,c的關(guān)系是(

A.a+bcB.a+c2bC.b+c2aD.abc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知分別為橢圓的左、右焦點,且橢圓經(jīng)過點和點,其中為橢圓的離心率.

(1)求橢圓的方程;

(2)過點的直線橢圓于另一點,點在直線上,且.若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年9月16日下午5時左右,今年第22號臺風(fēng)“山竹”在廣東江門川島鎮(zhèn)附近正面登陸,給當(dāng)?shù)厝嗣裨斐闪司薮蟮呢敭a(chǎn)損失,某記者調(diào)查了當(dāng)?shù)啬承^(qū)的100戶居民由于臺風(fēng)造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成,,,五組,并作出如下頻率分布直方圖.

(Ⅰ)根據(jù)頻率分布直方圖估計該小區(qū)居民由于臺風(fēng)造成的經(jīng)濟損失的眾數(shù)和平均值.

(Ⅱ)“一方有難,八方支援”,臺風(fēng)后居委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,記者調(diào)查的100戶居民捐款情況如下表格,在表格空白處填寫正確數(shù)字,并說明是否有99%以上的把握認為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?

(Ⅲ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量受災(zāi)居民中,采用隨機抽樣方法每次抽取1戶居民,抽取3次,記被抽取的3戶居民中自身經(jīng)濟損失超過元的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列及期望.

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,直線與拋物線交于兩點.

(Ⅰ)若直線過焦點,且與圓交于(其中軸同側(cè)),求證: 是定值;

(Ⅱ)設(shè)拋物線點的切線交于點,試問: 軸上是否存在點,使得為菱形?若存在,請說明理由并求此時直線的斜率和點的坐標.

查看答案和解析>>

同步練習(xí)冊答案