圖1,平面四邊形關于直線對稱,,,.把沿折起(如圖2),使二面角的余弦值等于

對于圖二,完成以下各小題:
(Ⅰ)求兩點間的距離;
(Ⅱ)證明:平面
(Ⅲ)求直線與平面所成角的正弦值.

(Ⅰ)。                                                                                                                
(Ⅱ)由已知得,推出, 
,得到平面
(Ⅲ)

解析試題分析:(Ⅰ)取的中點 ,連接 ,
,得:  
就是二面角的平面角,即           2分
中,解得,又
,解得。        4分                                                                                                                   
(Ⅱ)由
,∴, 
,  又,∴平面.     8分
(Ⅲ)方法一:由(Ⅰ)知平面,平面
∴平面平面,平面平面,
,則平面
就是與平面所成的角。             11分
.       13分
方法二:設點到平面的距離為
, ,
∴  ,           11分
于是與平面所成角的正弦為.         13分
方法三:以所在直線分別為軸,軸和軸建立空間直角坐標系,
. 
設平面的法向量為,則
,,,,
,則,    &

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在三棱錐DABC中,已知△BCD是正三角形,AB⊥平面BCDABBCa,EBC的中點,F在棱AC上,且AF=3FC

(1)求三棱錐DABC的表面積;
(2)求證AC⊥平面DEF;
(3)若MBD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
如圖,在四棱錐中,底面是正方形.已知,.

(Ⅰ)求證:;
(Ⅱ)求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M為AB的中點。

(Ⅰ)求證:BC1∥平面MA1C;
(Ⅱ)求證:AC1⊥平面A1BC。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)三棱錐中,,

(Ⅰ)求證:平面平面;
(Ⅱ)當時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在中,邊上的高,,,沿翻折,使得,得到幾何體。

(1)求證:;
(2)求與平面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在五面體ABCDEF中,,,,

(Ⅰ)求異面直線BF與DE所成角的余弦值;
(Ⅱ)在線段CE上是否存在點M,使得直線AM與平面CDE所成角的正弦值為?若存在,試確定點M的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐中,底面是直角梯形,,∠, ,平面⊥平面.

(1)求證:⊥平面;
(2)求平面和平面所成二面角(小于)的大小;
(3)在棱上是否存在點使得∥平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,四邊形均為菱形, ,且,

(Ⅰ)求證:平面;
(Ⅱ)求證:AE∥平面FCB;
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

同步練習冊答案