【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1 , A1C1的中點,BC=CA=CC1 , 則BM與AN所成角的余弦值為(
A.
B.
C.
D.

【答案】C
【解析】解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1 , A1C1的中點,如圖:BC 的中點為O,連結ON,
,則MN0B是平行四邊形,BM與AN所成角就是∠ANO,
∵BC=CA=CC1 ,
設BC=CA=CC1=2,∴CO=1,AO= ,AN= ,MB= = = ,
在△ANO中,由余弦定理可得:cos∠ANO= = =
故選:C.

畫出圖形,找出BM與AN所成角的平面角,利用解三角形求出BM與AN所成角的余弦值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù),且函數(shù)f(x)的圖象過點(1,3).
(1)求實數(shù)a,b值;
(2)用定義證明函數(shù)f(x)在 上單調(diào)遞增;
(3)求函數(shù)[1,+∞)上f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在(﹣1,1)上的偶函數(shù),當x∈[0,1)時f(x)=lg
(1)求f(x)的解析式;
(2)探求f(x)的單調(diào)區(qū)間,并證明f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“累積凈化量”是空氣凈化器質量的一個重要衡量指標,它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國家標準,對空氣凈化器的累計凈化量有如下等級劃分:

累積凈化量(克)

12以上

等級

為了了解一批空氣凈化器(共5000臺)的質量,隨機抽取臺機器作為樣本進行估計,已知這臺機器的累積凈化量都分布在區(qū)間中,按照、、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:

(1)求的值及頻率分布直方圖中的值;

(2)以樣本估計總體,試估計這批空氣凈化器(共5000臺)中等級為的空氣凈化器有多少臺?

(3)從累積凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A、B、C的對邊,且2asinA=(2b﹣c)sinB+(2c﹣b)sinC.
(Ⅰ)求角A的大。
(Ⅱ)若sinB+sinC= ,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,圓的極坐標方程為,圓的極坐標方程為,已知交于、兩點,點位于第一象限.

(Ⅰ)求點和點的極坐標;

(Ⅱ)設圓的圓心為,點是直線上的動點,且滿足,若直線的參數(shù)方程為為參數(shù)),則的值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C和y軸相切,圓心在直線x﹣3y=0上,且被直線y=x截得的弦長為 ,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,過橢圓右焦點F的直線L交橢圓于A、B兩點,交y軸于P點.設 ,則λ12等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:函數(shù) 在區(qū)間(m,m+1)上單調(diào)遞減,命題q:實數(shù)m滿足方程 表示的焦點在y軸上的橢圓.
(1)當p為真命題時,求m的取值范圍;
(2)若命題“p且q”為假命題,“p或q”為真命題,求m的取值范圍.

查看答案和解析>>

同步練習冊答案