【題目】某公司計劃在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告費用不超過9萬元,甲、乙電視臺的廣告費標準分別是500元/分鐘和200元分鐘,假設甲、乙兩個電視臺為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元分鐘,那么該公司合理分配在甲、乙兩個電視臺的廣告時間,能使公司獲得最大的收益是()萬元
A.72B.80C.84D.90
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系xOy中,過點P(﹣1,﹣2)的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點M、N.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若|PM|=|MN|,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=ex﹣e﹣x﹣x.
(1)求f(x)的單調區(qū)間;
(2)已知g(x)=x2f(x)+(x+1)[f(x)+(1﹣a)x]+(1﹣a)x3 . 若對所有x≥0,都有g(x)≥0成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=1,anan+1=2Sn , 設bn= ,若存在正整數(shù)p,q(p<q),使得b1 , bp , bq成等差數(shù)列,則p+q= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農科所發(fā)現(xiàn),一中作物的年收獲量y(單位:kg)與它”相近“作物的株數(shù)x具有線性相關關系(所謂兩株作物”相近“是指它們的直線距離不超過1m),并分別記錄了相近作物的株數(shù)為1,2,3,5,6,7時,該作物的年收獲量的相關數(shù)據(jù)如下:
X | 1 | 2 | 3 | 5 | 6 | 7 |
y | 60 | 55 | 53 | 46 | 45 | 41 |
(Ⅰ)求該作物的年收獲量y關于它”相近“作物的株數(shù)x的線性回歸方程;
(Ⅱ)農科所在如圖所示的正方形地塊的每個格點(指縱、橫直線的交叉點)處都種了一株該作物,其中每一個小正方形的面積為1,若在所種作物中隨機選取一株,求它的年收獲量的分布列與數(shù)學期望.(注:年收獲量以線性回歸方程計算所得數(shù)據(jù)為依據(jù))
附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線y=a+bx的斜率和截距的最小二乘估計分別為 = = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
直線 的參數(shù)方程為 ( 為參數(shù)),以坐標原點 為極點, 軸正半軸為極軸建立極坐標系,曲線 的極坐標方程為 ,直線 與曲線 交于不同的兩點 ,.
(1)求實數(shù) 的取值范圍;
(2)已知 ,設點 ,若 , , 成等比數(shù)列,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設施,其軸截面如圖中實線所示.ABCD是等腰梯形,AB=20米,∠CBF=α(F在AB的延長線上,α為銳角).圓E與AD,BC都相切,且其半徑長為100﹣80sinα米.EO是垂直于AB的一個立柱,則當sinα的值設計為多少時,立柱EO最矮?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com