分析 (1)利用絕對值的幾何意義,把函數(shù)寫成分段函數(shù)的形式,并畫出函數(shù)圖象;
(2)根據(jù)圖象寫出函數(shù)的值域,利用奇函數(shù)的定義證明函數(shù)的奇偶性.
解答 解:(1)$f(x)=\left\{\begin{array}{l}4,x≤-2\\-2x,-2<x<2\\-4,x≥2\end{array}\right.$,函數(shù)圖象如圖所示;
(2)f(x)的值域為[-4,4],f(x)為奇函數(shù),證明如下:
f(-x)=|-x-2|-|-x+2|=|x+2|-|x-2|=-f(x).所以f(x)為奇函數(shù)
點評 本題考查絕對值函數(shù),考查函數(shù)的值域、奇偶性,考查數(shù)形結合的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{2}{sinα}$ | B. | $-\frac{2}{tanα}$ | C. | $\frac{2}{{co{s}α}}$ | D. | $-\frac{2}{sinαcosα}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[\frac{1}{2}\;\;,\;\;+∞)$ | B. | (1,+∞) | ||
C. | $[\frac{1}{2}\;\;,\;\;1)∪({1\;\;,\;\;+∞})$ | D. | $(-1\;\;,\;\;\frac{1}{2}]∪({1\;\;,\;\;+∞})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,1) | B. | (-1,2) | C. | (-1,-2) | D. | (1,-2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-18,-16) | B. | [-18,-16] | C. | (-22,-18) | D. | (-20,-18) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $1-\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}-\frac{1}{2}$ | C. | $\sqrt{2}-1$ | D. | $\sqrt{3}-1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com