如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AD,DD1中點(diǎn).求證:(1)EF∥平面C1BD;
(2)A1C⊥平面C1BD.
考點(diǎn):直線與平面垂直的判定,直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:(1)連接AD1,由已知可證四邊形ABC1D1為平行四邊形,即有A1D∥BC1,可證得EF∥BC1,又EF?平面C1BD,BC1?平面C1BD,從而可證EF∥平面AB1D1
(2)連接AC,則AC⊥BD.可證AA1⊥平面ABCD,又AA1⊥BD,又AA1∩AC=A,可證BD⊥平面AA1C,有A1C⊥BD.同理可證A1C⊥BC1,又BD∩BC1=B,即可證明A1C⊥平面C1BD.
解答: 證明:(1)連接AD1
∵E,F(xiàn)分別是AD和DD1的中點(diǎn),
∴EF∥AD1
∵正方體ABCD-A1B1C1D1,
∴AB∥D1C1,AB=D1C1,
∴四邊形ABC1D1為平行四邊形,即有A1D∥BC1
∴EF∥BC1
又EF?平面C1BD,BC1?平面C1BD,
∴EF∥平面AB1D1
(2)連接AC,則AC⊥BD.
∵正方體ABCD-A1B1C1D1,∴AA1⊥平面ABCD,
∴AA1⊥BD
又AA1∩AC=A,∴BD⊥平面AA1C,
∴A1C⊥BD.
同理可證A1C⊥BC1,
又BD∩BC1=B,
∴A1C⊥平面C1BD.
點(diǎn)評:本題考查的知識點(diǎn)是直線與平面平行的判定,直線與平面垂直的判定,直線與平面垂直的性質(zhì),熟練掌握空間線線,線面垂直及平行的判定定理,性質(zhì)定理及幾何特征是解答此類問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,2),
b
=(cosθ,1),且
a
,
b
共線,其中θ∈(0,
π
2
)

(1)求tan(θ+
π
4
)
的值;
(2)若5cos(θ-φ)=3
5
cosφ,0<φ<
π
2
,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2011年3月發(fā)生在日本的9級大地震雖然過去多年了,但它對日本的核電站的破壞卻是持續(xù)的,其中有一種放射性元素銫137在其衰變過程中,假設(shè)近似滿足:其含量M(單位:太貝克)與時(shí)間t(單位:年)滿足函數(shù)關(guān)系:M(t)=M02-
t
30
,其中M0為t=0時(shí)銫137的含量.已知t=30時(shí),銫137含量的變化率是-10ln2(太貝克/年),則M(60)等于( 。
A、5太貝克
B、72ln 2太貝克
C、150ln 2太貝克
D、150太貝克

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P為銳角△ABC的外心(三角形外接圓圓心),
AP
=k(
AB
+
AC
)(k∈R).若cos∠BAC=
2
5
,則k=( 。
A、
5
14
B、
2
14
C、
5
7
D、
3
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓柱的側(cè)面展開圖是一個(gè)邊長為6π和4π的矩形,則該圓柱的底面積是(  )
A、24π2
B、36π2和16π2
C、36π
D、9π和4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾何體中不是旋轉(zhuǎn)體的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正項(xiàng)等比數(shù)列{an},已知a2=2,a3a4a5=29
(1)求首項(xiàng)a1和公比q的值;
(2)若數(shù)列{bn}滿足bn=
1
n
[lga1+lga2+…lgan-1+lg(kan)],問是否存在正數(shù)k,使數(shù)列{bn}為等差數(shù)列?若存在,求k的值.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

.
x1y11
x2y21
x3y31
.
=0”是“(x1,y1)、(x2,y2)、(x3,y3)三點(diǎn)共線”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算定積分:
(1)
1
0
e2xdx
;
(2)
π
4
π
6
cos2xdx
;
(3)
3
1
2xdx

查看答案和解析>>

同步練習(xí)冊答案