15.已知$\overrightarrow{a}$,$\overrightarrow$為非零向量,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,則一定有( 。
A.$\overrightarrow{a}$=$\overrightarrow$B.$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$,$\overrightarrow$方向相同
C.$\overrightarrow{a}$=-$\overrightarrow$D.$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$,$\overrightarrow$方向相反

分析 根據(jù)向量數(shù)量積的應(yīng)用,利用平方法進(jìn)行判斷即可.

解答 解:∵$\overrightarrow{a}$,$\overrightarrow$為非零向量,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,
∴平方得|$\overrightarrow{a}$|2+|$\overrightarrow$|2+2$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|2+|$\overrightarrow$|2+2|$\overrightarrow{a}$|•|$\overrightarrow$|,
即$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|,
∴|$\overrightarrow{a}$|•|$\overrightarrow$|cos<$\overrightarrow{a}$,$\overrightarrow$>=|$\overrightarrow{a}$|•|$\overrightarrow$|,
則cos<$\overrightarrow{a}$,$\overrightarrow$>=1,即$\overrightarrow{a}∥\overrightarrow$,且$\overrightarrow{a}$,$\overrightarrow$方向相同.
故選:B.

點(diǎn)評(píng) 本題主要考查向量數(shù)量積的應(yīng)用,利用平方法是解決本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=ax2+2ax+1在[-3,2]上有最大值4.那么實(shí)數(shù)a等于( 。
A.-3B.$\frac{3}{8}$C.$-3或\frac{3}{8}$D.$3或-\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且$B=C,2b=\sqrt{3}a$,則cosA=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2$\sqrt{5}$,拋物線y=$\frac{1}{16}$x2+1與雙曲線C的漸近線相切,則雙曲線C的方程為$\frac{{x}^{2}}{4}$-y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若函數(shù)f(x)=$\frac{lnx}{x}$與函數(shù)g(x)=kx的圖象上存在關(guān)于原點(diǎn)對(duì)稱的點(diǎn),則實(shí)數(shù)k的最大值是( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{e}$D.$\frac{1}{2e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=x+ax2+blnx在x=$\frac{3}{2}$處取得極大值為-$\frac{3}{4}$+3ln$\frac{3}{2}$.
(1)求a,b的值;
(2)證明:f(x)≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知某中學(xué)高三文科班學(xué)生共800人參加了數(shù)學(xué)與地理的水平測(cè)試,學(xué)校決定利用隨機(jī)數(shù)表從總抽取100人進(jìn)行成績(jī)抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號(hào);
(1)如果從第8行第7列的數(shù)開(kāi)始向右讀,請(qǐng)你一次寫出最先檢查的3個(gè)人的編號(hào);
(下面摘取了第7行到第9行)
84 42 17 53 31   57 24 55 06 88   77 04 74 47 67   21 76 33 50 25  83 92 12 06 76
63 01 63 78 59   16 95 56 67 19   98 10 50 71 75   12 86 73 58 07  44 39 52 38 79 
33 21 12 34 29   78 64 56 07 82   52 42 07 44 38   15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚?br />成績(jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí),橫向,縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?0+18+4=42,
①若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率30%,求a,b的值.
人數(shù)數(shù)學(xué)
優(yōu)秀良好及格
地理優(yōu)秀7205
良好9186
及格a4b
②在地理成績(jī)及格的學(xué)生中,已知a≥10,b≥8,求數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=2ex+$\frac{1}{2}$ax2+ax+1有兩個(gè)極值,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-2]B.(-∞,-2)C.(-2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.一元二次不等式x2+ax+b>0的解集為x∈(-∞,-3)∪(1,+∞),則不等式ax2+bx-2<0的解集為( 。
A.(-3,1)B.(-∞,-$\frac{1}{2}$)∪(2,+∞)C.(-$\frac{1}{2}$,2)D.(-1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案