(滿分13分)
如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形.
(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;
(1)要證DM∥平面APC,只需證明MD∥AP(因為AP?面APC)即可.
(2)在平面ABC內(nèi)直線AP⊥BC,BC⊥AC,即可證明BC⊥面APC,從而證得平面ABC⊥平面APC;
試題分析:解:(1)由已知得,MD是△ABP的中位線 ∴MD∥AP
∵MD?面APC,AP?面APC
∴MD∥面APC
(2)∵△PMB為正三角形,D為PB的中點,
∴MD⊥PB,∴AP⊥PB 又∵AP⊥PC,PB∩PC=P ∴AP⊥面PBC
∵BC?面PBC ∴AP⊥BC 又∵BC⊥AC,AC∩AP=A
∴BC⊥面APC ∵BC?面ABC ∴平面ABC⊥平面APC
點評:解決的關(guān)鍵是利用線面和面面的平行和垂直的判定定理來分析證明,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
關(guān)于直線
、
與平面
、
,有下列四個命題:
①
且
,則
; ②
且
,則
;
③
且
,則
; ④
且
,則
.
其中假命題的序號是:( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知在四棱錐
中,
,
,
,
分別是
的中點.
(Ⅰ)求證
;
(Ⅱ)求證
;
(Ⅲ)若
,求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱錐P -ABC中,點P在平面ABC上的射影D是AC的中點.BC ="2AC=8,AB" =
(I )證明:平面PBC丄平面PAC
(II)若PD =
,求二面角A-PB-C的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱錐
中,四邊形
是菱形,
,
為
的中點.
(1)求證:
面
; (2)求證:平面
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
將正方體的紙盒展開如圖,直線
、
在原正方體的位置關(guān)系是( )
A.平行 | B.垂直 | C.相交成60°角 | D.異面且成60°角 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=2,OB=3,OC=4,E是OC的中點.
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,已知
⊙
所在的平面,AB是⊙
的直徑,
,
是⊙
上一點,且
,
分別為
中點。
(1)求證:
平面
;
(2)求證:
;
(3)求三棱錐
-
的體積。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知兩個正四棱錐P-ABCD與Q-ABCD的高分別為1和2,AB=4.
(Ⅰ)證明PQ⊥平面ABCD;
(Ⅱ)求異面直線AQ與PB所成的角;
(Ⅲ)求點P到平面QAD的距離.
查看答案和解析>>