16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,把方程f(x)-x=0的根按從小到大順序排成一個(gè)數(shù)列,則該數(shù)列的前n項(xiàng)和Sn=$\frac{n(n-1)}{2}$.

分析 函數(shù)y=f(x)與y=x在(0,1],(1,2],(2,3],(3,4],…,(n,n+1]上的交點(diǎn)依次為(0,0),(1,1),(2,2),(3,3),(4,4),…,(n+1,n+1).即方程f(x)-x=0在(2,3],(3,4],…,(n,n+1]上的根依次為3,4,…n+1.方程f(x)-x=0的根按從小到大的順序排列所得數(shù)列為0,1,2,3,4,…,可得數(shù)列的前n項(xiàng)和.

解答 解:當(dāng)0<x≤1時(shí),有-1<x-1<0,則f(x)=f(x-1)+1=2x-1,
當(dāng)1<x≤2時(shí),有0<x-1≤1,則f(x)=f(x-1)+1=2x-2+1,
當(dāng)2<x≤3時(shí),有1<x-1≤2,則f(x)=f(x-1)+1=2x-3+2,
當(dāng)3<x≤4時(shí),有2<x-1≤3,則f(x)=f(x-1)+1=2x-4+3,
以此類(lèi)推,當(dāng)n<x≤n+1(其中n∈N)時(shí),則f(x)=f(x-1)+1=2x-n-1+n,
所以,函數(shù)f(x)=2x的圖象與直線y=x+1的交點(diǎn)為:(0,1)和(1,2),
由于指數(shù)函數(shù)f(x)=2x為增函數(shù)且圖象下凸,故它們只有這兩個(gè)交點(diǎn).
然后①將函數(shù)f(x)=2x和y=x+1的圖象同時(shí)向下平移一個(gè)單位,即得到函數(shù)f(x)=2x-1和y=x的圖象,
取x≤0的部分,可見(jiàn)它們有且僅有一個(gè)交點(diǎn)(0,0).
即當(dāng)x≤0時(shí),方程f(x)-x=0有且僅有一個(gè)根x=0.
②、僦泻瘮(shù)f(x)=2x-1和y=x圖象-1<x≤0的部分,再同時(shí)向上和向右各平移一個(gè)單位,
即得f(x)=2x-1和y=x在0<x≤1上的圖象,此時(shí)它們?nèi)匀恢挥幸粋(gè)交點(diǎn)(1,1).
即當(dāng)0<x≤1時(shí),方程f(x)-x=0有且僅有一個(gè)根x=1.
③、谥泻瘮(shù)f(x)=2x-1和y=x在0<x≤1上的圖象,繼續(xù)按照上述步驟進(jìn)行,
即得到f(x)=2x-2+1和y=x在1<x≤2上的圖象,此時(shí)它們?nèi)匀恢挥幸粋(gè)交點(diǎn)(2,2).
即當(dāng)1<x≤2時(shí),方程f(x)-x=0有且僅有一個(gè)根x=2.
④以此類(lèi)推,函數(shù)y=f(x)與y=x在(2,3],(3,4],…,(n,n+1]上的交點(diǎn)依次為(3,3),(4,4),…(n+1,n+1).
即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次為3,4,…,n+1.
綜上所述方程f(x)-x=0的根按從小到大的順序排列所得數(shù)列為:
0,1,2,3,4,…,
∴該數(shù)列的前n項(xiàng)和Sn=$\frac{n(n-1)}{2}$,n∈N+
故答案為:$\frac{n(n-1)}{2}$.

點(diǎn)評(píng) 本題考查了數(shù)列遞推公式、函數(shù)圖象交點(diǎn)與零點(diǎn)的關(guān)系、等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x0,滿足f(-x0)=-f(x0),則稱f(x)為“局部奇函數(shù)”,已知f(x)=4x-m2x+1+m-3為定義R上的“局部奇函數(shù)”,則實(shí)數(shù)m的取值范圍是(  )
A.$[1-\sqrt{3},+∞)$B.[-2,+∞)C.$[-2,2\sqrt{2}]$D.$[-2,1+\sqrt{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.i是虛數(shù)單位,則$\frac{2i}{1+3i}$=( 。
A.-$\frac{3}{5}$+$\frac{1}{5}$iB.$\frac{3}{4}$-$\frac{1}{4}$iC.$\frac{3}{5}$+$\frac{1}{5}$iD.$\frac{3}{4}$+$\frac{1}{4}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.“a=$\frac{1}{18}$“是“對(duì)任意的正數(shù)x,x+$\frac{a}{2x}$≥$\frac{1}{3}$“的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.a(chǎn)=20.5,b=logπ3,c=log2sin$\frac{2π}{5}$,則( 。
A.b>a>cB.a>b>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西省高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西省高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù),則實(shí)數(shù)t的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河南省新鄉(xiāng)市高二上學(xué)期入學(xué)考數(shù)學(xué)卷(解析版) 題型:解答題

已知

(1)求的值;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.若某正棱臺(tái)的底面是正方形,上底面邊長(zhǎng)為4cm,下底面邊長(zhǎng)為10cm,高為4cm,求此正棱臺(tái)的全面積和體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案