分析 函數(shù)y=f(x)與y=x在(0,1],(1,2],(2,3],(3,4],…,(n,n+1]上的交點(diǎn)依次為(0,0),(1,1),(2,2),(3,3),(4,4),…,(n+1,n+1).即方程f(x)-x=0在(2,3],(3,4],…,(n,n+1]上的根依次為3,4,…n+1.方程f(x)-x=0的根按從小到大的順序排列所得數(shù)列為0,1,2,3,4,…,可得數(shù)列的前n項(xiàng)和.
解答 解:當(dāng)0<x≤1時(shí),有-1<x-1<0,則f(x)=f(x-1)+1=2x-1,
當(dāng)1<x≤2時(shí),有0<x-1≤1,則f(x)=f(x-1)+1=2x-2+1,
當(dāng)2<x≤3時(shí),有1<x-1≤2,則f(x)=f(x-1)+1=2x-3+2,
當(dāng)3<x≤4時(shí),有2<x-1≤3,則f(x)=f(x-1)+1=2x-4+3,
以此類(lèi)推,當(dāng)n<x≤n+1(其中n∈N)時(shí),則f(x)=f(x-1)+1=2x-n-1+n,
所以,函數(shù)f(x)=2x的圖象與直線y=x+1的交點(diǎn)為:(0,1)和(1,2),
由于指數(shù)函數(shù)f(x)=2x為增函數(shù)且圖象下凸,故它們只有這兩個(gè)交點(diǎn).
然后①將函數(shù)f(x)=2x和y=x+1的圖象同時(shí)向下平移一個(gè)單位,即得到函數(shù)f(x)=2x-1和y=x的圖象,
取x≤0的部分,可見(jiàn)它們有且僅有一個(gè)交點(diǎn)(0,0).
即當(dāng)x≤0時(shí),方程f(x)-x=0有且僅有一個(gè)根x=0.
②、僦泻瘮(shù)f(x)=2x-1和y=x圖象-1<x≤0的部分,再同時(shí)向上和向右各平移一個(gè)單位,
即得f(x)=2x-1和y=x在0<x≤1上的圖象,此時(shí)它們?nèi)匀恢挥幸粋(gè)交點(diǎn)(1,1).
即當(dāng)0<x≤1時(shí),方程f(x)-x=0有且僅有一個(gè)根x=1.
③、谥泻瘮(shù)f(x)=2x-1和y=x在0<x≤1上的圖象,繼續(xù)按照上述步驟進(jìn)行,
即得到f(x)=2x-2+1和y=x在1<x≤2上的圖象,此時(shí)它們?nèi)匀恢挥幸粋(gè)交點(diǎn)(2,2).
即當(dāng)1<x≤2時(shí),方程f(x)-x=0有且僅有一個(gè)根x=2.
④以此類(lèi)推,函數(shù)y=f(x)與y=x在(2,3],(3,4],…,(n,n+1]上的交點(diǎn)依次為(3,3),(4,4),…(n+1,n+1).
即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次為3,4,…,n+1.
綜上所述方程f(x)-x=0的根按從小到大的順序排列所得數(shù)列為:
0,1,2,3,4,…,
∴該數(shù)列的前n項(xiàng)和Sn=$\frac{n(n-1)}{2}$,n∈N+.
故答案為:$\frac{n(n-1)}{2}$.
點(diǎn)評(píng) 本題考查了數(shù)列遞推公式、函數(shù)圖象交點(diǎn)與零點(diǎn)的關(guān)系、等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[1-\sqrt{3},+∞)$ | B. | [-2,+∞) | C. | $[-2,2\sqrt{2}]$ | D. | $[-2,1+\sqrt{3}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{3}{5}$+$\frac{1}{5}$i | B. | $\frac{3}{4}$-$\frac{1}{4}$i | C. | $\frac{3}{5}$+$\frac{1}{5}$i | D. | $\frac{3}{4}$+$\frac{1}{4}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b>a>c | B. | a>b>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西省高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),求和的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西省高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù) 若,則實(shí)數(shù)t的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河南省新鄉(xiāng)市高二上學(xué)期入學(xué)考數(shù)學(xué)卷(解析版) 題型:解答題
已知.
(1)求的值;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com