【題目】已知函數(shù),.

1)求的最大值和最小值;

2)若關(guān)于x的方程上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.

【答案】1)最大值為,最小值為;(2.

【解析】

1)利用二倍角的余弦公式、誘導(dǎo)公式以及輔助角公式化簡(jiǎn)函數(shù)的解析式為,由計(jì)算出的取值范圍,結(jié)合正弦函數(shù)的基本性質(zhì)可求出函數(shù)在區(qū)間上的最大值和最小值;

2)由,可得出,令,將問(wèn)題轉(zhuǎn)化為直線與函數(shù)在區(qū)間上的圖象有兩個(gè)交點(diǎn),利用數(shù)形結(jié)合思想能求出實(shí)數(shù)的取值范圍.

1

,,

因此,函數(shù)在區(qū)間上的最大值為,最小值為;

2)由,即,得.

,則直線與函數(shù)在區(qū)間上的圖象有兩個(gè)交點(diǎn),如下圖所示:

由圖象可知,當(dāng)時(shí),即當(dāng)時(shí),直線與函數(shù)在區(qū)間上的圖象有兩個(gè)交點(diǎn).

因此,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在橢圓G上,且橢圓的離心率為

求橢圓G的方程;

若斜率為1的直線l與橢圓G交于A、B兩點(diǎn),以AB為底做等腰三角形,頂點(diǎn)為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市交通部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照,,分成5組,制成如圖所示頻率分直方圖.

(1)求圖中x的值;

(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

(3)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且2,,成等差數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求數(shù)列的前項(xiàng)和;

(3)對(duì)于(2)中的,設(shè),求數(shù)列中的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中, , 的中點(diǎn), 的中點(diǎn).將沿折起到,使得平面平面(如圖).

圖1 圖2

(Ⅰ)求證:

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產(chǎn)量y(萬(wàn)噸)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(Ⅱ)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合是集合 的一個(gè)含有個(gè)元素的子集.

(Ⅰ)當(dāng)時(shí),

設(shè)

(i)寫出方程的解;

(ii)若方程至少有三組不同的解,寫出的所有可能取值.

(Ⅱ)證明:對(duì)任意一個(gè),存在正整數(shù)使得方程 至少有三組不同的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng) ,

(1)求證:數(shù)列為等比數(shù)列;

(2)記,若Sn<100,求最大正整數(shù)n;

(3)是否存在互不相等的正整數(shù)ms,n,使m,sn成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請(qǐng)給以證明;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲、乙兩個(gè)盒子中分別裝有標(biāo)號(hào)為1、2、34的四個(gè)球,現(xiàn)從甲、乙兩個(gè)盒子中各取出1個(gè)球,每個(gè)球被取出的可能性相等.

)求取出的兩個(gè)球上標(biāo)號(hào)為相同數(shù)字的概率;

)求取出的兩個(gè)球上標(biāo)號(hào)之積能被3整除的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案